161 research outputs found

    Direct discrimination of structured light by humans

    Full text link
    We predict and experimentally verify an entoptic phenomenon through which humans are able to perceive and discriminate structured light with space-varying polarization. Direct perception and discrimination is possible through the observation of distinct profiles induced by the interaction between the polarization gradients in a uniform-intensity beam and the radially symmetric dichroic elements that are centered on the foveola in the macula of the human eye. A psychophysical study was conducted where optical states with coupled polarization and orbital angular momentum (OAM) were directed onto the retina of participants. The participants were able to correctly discriminate between two states, differentiated by OAM =\pm7, with an average success probability of 77.6 % (average sensitivity d^\prime=1.7, t(9) = 5.9, p = 2\times 10^{-4}). These results enable new methods of robustly characterizing the structure of the macula, probing retina signalling pathways, and conducting experiments with non-separable optical states and human detectors

    Generation and detection of spin-orbit coupled neutron beams

    Full text link
    Spin-orbit coupling of light has come to the fore in nano-optics and plasmonics, and is a key ingredient of topological photonics and chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation and detection of neutron beams with coupled spin and orbital angular momentum. 3^3He neutron spin-filters are used in conjunction with specifically oriented triangular coils to prepare neutron beams with lattices of spin-orbit correlations, as demonstrated by their spin-dependant intensity profiles. These correlations can be tailored to particular applications, such as neutron studies of topological materials

    Quantum Information Approach to the Implementation of a Neutron Cavity

    Full text link
    Using the quantum information model of dynamical diffraction we consider a neutron cavity composed of two perfect crystal silicon blades capable of containing the neutron wavefunction. We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random walk. Good agreement is found between the simulation and the experimental implementation. Analysis of the standing neutron waves is presented in regards to the crystal geometry and parameters; and the conditions required for well-defined bounces are derived. The presented results enable new approaches to studying the setups utilizing neutron confinement, such as the experiments to measure neutron magnetic and electric dipole moments.Comment: 6 pages, 5 figure
    • …
    corecore