29 research outputs found

    Effects of branching spatial structure and life history on the asymptotic growth rate of a population

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Theoretical Ecology 3 (2010): 137-152, doi:10.1007/s12080-009-0058-0.The dendritic structure of a river network creates directional dispersal and a hierarchical arrangement of habitats. These two features have important consequences for the ecological dynamics of species living within the network.We apply matrix population models to a stage-structured population in a network of habitat patches connected in a dendritic arrangement. By considering a range of life histories and dispersal patterns, both constant in time and seasonal, we illustrate how spatial structure, directional dispersal, survival, and reproduction interact to determine population growth rate and distribution. We investigate the sensitivity of the asymptotic growth rate to the demographic parameters of the model, the system size, and the connections between the patches. Although some general patterns emerge, we find that a species’ mode of reproduction and dispersal are quite important in its response to changes in its life history parameters or in the spatial structure. The framework we use here can be customized to incorporate a wide range of demographic and dispersal scenarios.Funding for this work came from the James S. McDonnell Foundation (EEG, HJL, WFF). MGN was supported by grants from the National Science Foundation (CMG-0530830, OCE-0326734, ATM-0428122)

    Weaned age variation in the Virunga mountain gorillas (Gorilla beringei beringei)

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00265-016-2066-6Weaning marks an important milestone during life history in mammals indicating nutritional independence from the mother. Age at weaning is a key measure of maternal investment and care, affecting female reproductive rates, offspring survival and ultimately the viability of a population. Factors explaining weaned age variation in the endangered mountain gorilla are not yet well understood. This study investigated the impact of group size, group type (one-male versus multi-male), offspring sex, as well as maternal age, rank, and parity on weaned age variation in the Virunga mountain gorilla population. The status of nutritional independence was established in 69 offspring using long-term suckling observations. A Cox-regression with mixed effects was applied to model weaned age and its relationship with covariates. Findings indicate that offspring in one-male groups are more likely to be weaned earlier than offspring in multi-male groups, which may reflect a female reproductive strategy to reduce higher risk of infanticide in one-male groups. Inferior milk production capacity and conflicting resource allocation between their own and offspring growth may explain later weaning in primiparous mothers compared to multiparous mothers. Sex-biased weaned age related to maternal condition defined by parity, rank, and maternal age will be discussed in the light of the Trivers-Willard hypothesis. Long-term demographic records revealed no disadvantage of early weaning for mother or offspring. Population growth and two peaks in weaned age within the Virunga population encourage future studies on the potential impact of bamboo shoots as a weaning food and other environmental factors on weaning

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome
    corecore