34 research outputs found

    Distinct Roles for Neuropilin1 and Neuropilin2 during Mouse Corneal Innervation

    Get PDF
    Trigeminal sensory innervation of the cornea is critical for protection and synthesis of neuropeptides required for normal vision. Little is known about axon guidance during mammalian corneal innervation. In contrast to the chick where a pericorneal nerve ring forms via Npn/Sema signaling, mouse corneal axons project directly into the presumptive cornea without initial formation of an analogous nerve ring. Here we show that during development of the mouse cornea, Npn1 is strongly expressed by the trigeminal ganglion whereas Npn2 is expressed at low levels. At the same time Sema3A and Sema3F are expressed in distinct patterns in the ocular tissues. Npn1sema−/− mutant corneas become precociously and aberrantly innervated by nerve bundles that project further into the corneal stroma. In contrast, stromal innervation was not affected in Npn2−/− mutants. The corneal epithelium was prematurely innervated in both Npn1sema−/− and Npn2−/− mutants. These defects were exacerbated in Npn1sema−/−;Npn2−/− double mutants, which in addition showed ectopic innervation of the region between the optic cup and lens vesicle. Collectively, our data show that Sema3A/Npn1 and Sema3F/Npn2 signaling play distinct roles and both are required for proper innervation of the mouse cornea

    Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors

    Get PDF
    BACKGROUND: PAX6 is a transcription factor playing a crucial role in the development of the eye and in the differentiation of the pancreatic endocrine cells as well as of enteroendocrine cells. Studies on the mouse Pax6 gene have shown that sequences upstream from the P0 promoter are required for expression in the lens and the pancreas; but there remain discrepancies regarding the precise location of the pancreatic regulatory elements. RESULTS: Due to genome duplication in the evolution of ray-finned fishes, zebrafish has two pax6 genes, pax6a and pax6b. While both zebrafish pax6 genes are expressed in the developing eye and nervous system, only pax6b is expressed in the endocrine cells of the pancreas. To investigate the cause of this differential expression, we used a combination of in silico, in vivo and in vitro approaches. We show that the pax6b P0 promoter targets expression to endocrine pancreatic cells and also to enteroendocrine cells, retinal neurons and the telencephalon of transgenic zebrafish. Deletion analyses indicate that strong pancreatic expression of the pax6b gene relies on the combined action of two conserved regulatory enhancers, called regions A and C. By means of gel shift assays, we detected binding of the homeoproteins PDX1, PBX and PREP to several cis-elements of these regions. In constrast, regions A and C of the zebrafish pax6a gene are not active in the pancreas, this difference being attributable to sequence divergences within two cis-elements binding the pancreatic homeoprotein PDX1. CONCLUSION: Our data indicate a conserved role of enhancers A and C in the pancreatic expression of pax6b and emphasize the importance of the homeoproteins PBX and PREP cooperating with PDX1, in activating pax6b expression in endocrine pancreatic cells. This study also provides a striking example of how adaptative evolution of gene regulatory sequences upon gene duplication progressively leads to subfunctionalization of the paralogous gene pair

    Neurexins and Neuroligins: Recent Insights from Invertebrates

    Get PDF
    During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals

    Differential patterns of semaphorin expression in the developing rat brain

    No full text
    Semaphorins are a large family of cell-surface and secreted proteins that have been shown to function as chemorepellents or inhibitors of growth cones of peripheral neurons, yet little is known about their role in patterning central pathways. In order to examine whether semaphorins may be involved in guiding the formation of the reciprocal thalamocortical connections in the rat, we have analyzed the spatial and temporal expression of five recently identified rodent semaphorins (semB, C, D, F and G) using in situ hybridization. Transcripts of all five genes were present throughout the period examined (E15 to P7) and displayed highly specific spatiotemporal distributions. We have based our discussion of putative semaphorin effects on their known functions as chemorepellents and found their spatiotemporal expression patterns compatible with such a role in several developmental events. Specifically, semaphorins are in the position to: (i) prevent neurite extension into the ventricular neuroepithelium throughout the brain; (ii) confer non-permissive properties to the embryonic cortical plate, hence regulating the radial invasion of corticopetal afferents; (iii) confine axonal extension to the intermediate zone and subplate; (iv) maintain the fasciculated state of thalamocortical and corticothalamic axons and prevent them from branching while they grow through the striatum; and (v) restrict the terminal arborizations of thalamic afferents to layer IV. The evidence that different semaphorin genes are often coexpressed further suggests that the various molecules might interact in synergistic ways. Taken together, our results support the hypothesis that semaphorins could act as guidance signals in the development of the thalamocortical projections and suggest that innervation specificity is achieved through the combined action of multiple guidance cues. Furthermore, these data provide a basis for the design of functional assays and for the study of mice carrying knockouts in specific semaphorin genes

    Cis interaction between Semaphorin6A and Plexin-A4 modulates the repulsive response to Sema6A

    No full text
    The correct navigation of axons to their targets depends on guidance molecules in the extra-cellular environment. Differential responsiveness to a particular guidance cue is largely an outcome of disparity in the expression of its receptors on the reacting axons. Here, we show that the differential responsiveness of sympathetic and sensory neurons to the transmembrane Semaphorin Sema6A is mainly determined by its co-expression in the responding neurons. Both sympathetic and sensory neurons express the Sema6A receptor Plexin-A4, but only sympathetic neurons respond to it. The expression of Sema6A counteracts this responsiveness and is detected only in sensory neurons. Remarkably, sensory neurons that lack Sema6A gain sensitivity to it in a Plexin-A4-dependent manner. Using heterologus systems, we show that the co-expression of Sema6A and Plexin-A4 hinders the binding of exogenous ligand, suggesting that a Sema6A–Plexin-A4 cis interaction serves as an inhibitory mechanism. Finally, we provide evidence for differential modes of interaction in cis versus in trans. Thus, co-expression of a transmembrane cue together with its receptor can serve as a guidance response modulator
    corecore