14 research outputs found

    Characteristics of Organ Donors Who Died From Suicide by Hanging in Australia and New Zealand: A Retrospective Study

    Get PDF
    Background and objective: The annual incidence of suicide by hanging in Australia and New Zealand has increased in the past decade, and a significant number of these individuals are becoming organ donors. The rates of organ donation following deaths from hanging is unknown and the characteristics of this cohort of donors have not been described in the literature. In light of this, we aimed to examine the trends in organ donation from individuals who had died from hanging, based on the solid organ donor data from the Australia and New Zealand Organ Donation (ANZOD) Registry. Methods: We conducted a retrospective study that analyzed the ANZOD Registry donor data (2006-2015) to describe the characteristics of solid organ donors who had died by hanging (post-hanging group); these characteristics were compared to those of individuals who died by all other causes (non-hanging group). Results: During the study period, the number and proportion of donors who died by suicide from hanging increased. Of the 4,024 consented organ donors, 226 had died by hanging and 3,798 had died from other causes. The probability that an individual who died by hanging would become an organ donor increased from 0.5 to 3%. Compared to donors who died by all other causes, post-hanging donors were younger (median age of 30 vs. 50 years), with fewer comorbidities, and a higher incidence of smoking. There was no significant difference in the proportion of those who indicated a prior intent to donate organs between post-hanging (34%) and non-hanging donors (38%). A higher proportion of post-hanging donors donated via the donation after the circulatory death pathway (36.3%) than non-hanging donors (24.2%). Individuals in the post-hanging cohort donated an average of 4.19 organs compared to 3.62 in the non-hanging cohort. Conclusion: We believe the findings of this retrospective analysis will help inform clinical decision-making regarding organ donation, including the best approaches to obtaining donation consent. Our findings will help physicians provide care to patients and to families of individuals in this challenging group, where organ donation potential is high. Further investigations are required to determine which aspects of healthcare influence the donation rates in individuals who have died by hanging and the outcomes related to transplanted organs

    TORquing metabolic reprogramming in cancer cells

    No full text

    A Robust Low Power Static Random Access Memory Cell Design

    Get PDF
    Stability of a Static Random Access Memory (SRAM) cell is an important factor when considering an SRAM cell for any application. The Static Noise Margin (SNM) of a cell, which determines the stability, varies under different operating conditions. Based on the performance of three existing SRAM cell designs, 6T, 8T and 10T, a 10 Transistor SRAM cell is proposed which has good stability and has the advantage of reduced read power when compared to 6T and 8T SRAM cells. The proposed 10T SRAM cell has a single-ended read circuit which improves SNM over the 6T cell. The proposed 10T cell doesn\u27t require a pre-charge circuit and this in-turn improves read power and also reduces the read time since there is no need to pre-charge the bit-line before reading it. The Read SNM and Hold SNM of the proposed cell at a VDD of 1V and at 25°C is 254mV. The measured RSNM, HSNM and Write SNM at temperatures 0°C, 40°C, 80°C and 120°C and also at supply voltages 1V, 0.8V and 0.6V show the design is robust. The Write SNM of the proposed cell at a VDD of 1V and Pull-up Ratio of 1 is 275mV. Finally, a 32-byte memory array is built using the proposed 10T SRAM cell and the read, write times are 149ps and 21.6ps, respectively. The average power consumed by the 32-byte array over a 12ns period is 13.8uW. All the designs are done in the 32nm FinFET technology

    A Robust Low Power Static Random Access Memory Cell Design

    Get PDF
    Stability of a Static Random Access Memory (SRAM) cell is an important factor when considering an SRAM cell for any application. The Static Noise Margin (SNM) of a cell, which determines the stability, varies under different operating conditions. Based on the performance of three existing SRAM cell designs, 6T, 8T and 10T, a 10 Transistor SRAM cell is proposed which has good stability and has the advantage of reduced read power when compared to 6T and 8T SRAM cells. The proposed 10T SRAM cell has a single-ended read circuit which improves SNM over the 6T cell. The proposed 10T cell doesn\u27t require a pre-charge circuit and this in-turn improves read power and also reduces the read time since there is no need to pre-charge the bit-line before reading it. The Read SNM and Hold SNM of the proposed cell at a VDD of 1V and at 25°C is 254mV. The measured RSNM, HSNM and Write SNM at temperatures 0°C, 40°C, 80°C and 120°C and also at supply voltages 1V, 0.8V and 0.6V show the design is robust. The Write SNM of the proposed cell at a VDD of 1V and Pull-up Ratio of 1 is 275mV. Finally, a 32-byte memory array is built using the proposed 10T SRAM cell and the read, write times are 149ps and 21.6ps, respectively. The average power consumed by the 32-byte array over a 12ns period is 13.8uW. All the designs are done in the 32nm FinFET technology

    Respiratory Changes During Spinal Anaesthesia for Gynaecological Laparoscopic Surgery

    No full text
    Background: It is currently presumed that spinal anaesthesia can compromise respiratory muscle function during carbon dioxide (CO2) pneumoperitoneum. This observational study was designed to delineate the respiratory effects of CO2 pneumoperitoneum under spinal anaesthesia. Patients & Methods: Forty one patients undergoing elective gynecological laparoscopy were administered spinal anaesthesia with 15 mg heavy bupivacaine and 50 mcg of fentanyl. Heart rare, blood pressure, tidal volume, respiratory rate and end tidal CO2 were serially recorded before, during and after the pneumoperitoneum. Arterial blood gas analysis was done before and 20 min after initiation of pneumoperitoneum. Results: The mean heart rate and blood pressure decreased by less than 20% of the preoperative value. The mean tidal volume decreased from 353 ± 81(Standard Deviation) to 299±95 ml, p = 0.032, over the first 9 min after the pneumoperitoneum with a complete recovery towards the base line, 340 ± 72 ml, within 30 min during the surgery. The maximal inspiratory capacity declined from 1308±324 ml to 1067±296 ml at 20 min and recovered to 1187±267 ml, 5min after decompression. There was no observed change in the respiratory rate. Similarly, increase in the end tidal CO2 from 31.68±4.13 to 37.62±4.21 mmHg, p = 0.000, reached a plateau around 15 min and declined after decompression. Arterial carbon dioxide showed a corresponding increase at 20 min without change in arterial to end tidal CO2 difference. All observed changes were within the physiological limits. Conclusion: In a conscious patient undergoing laparoscopy with pneumoperitoneum, under spinal anaesthesia, the preserved inspiratory diaphragmatic activity maintains ventilation and, the gas exchange within physiological limits. Hence it is a safe alternative to general anaesthesia

    Computational modeling of battery thermal energy management system using phase change materials

    No full text
    Similar to an IC (Internal combustion) engine which requires cooling to operate at optimum temperature for better efficiency; electric vehicles do require a similar system. There are various methods used in the current market for thermal management of batteries, of these our paper focuses on phase change materials (PCM). This cooling strategy can store an enormous amount of heat produced inside a battery because of its high latent heat capability. A 3D model of the battery using the multi-scale multi-dimension model (MSMD) for battery simulation and Solidification/melting models were used to showcase the melting of PCM due to the heat generated from a cell. ANSYS fluent was used to carry out the simulations. These computations are carried out at different C-rate to find the time taken for a battery to discharge and to find the impact of C-rate on PCM performance. Besides, temperature data for the cell was recorded before and after PCM was involved to compare the temperature difference between various PCM's

    Impact of human–human virus transmission in an air-conditioned room with proper ventilation system

    No full text
    As we are probably aware of certain infectious diseases that transmit from body to body because of perspiration or respiration of air from a human being containing strains of the infection, the goal of this investigation is to see how the infection is getting spread from a human residing in a closed area provided with air conditioner and with an appropriate ventilation framework that need to be involved to diminish infection dissemination in this enclosed area. Considering the present COVID-19 situation, it is important to discover the effect of infection spread to an individual contagion source. An appropriate CFD-model giving analysis of infection transmission from individual to individual in an air-conditioned room would give results to understand such situations. Likewise, this examination would help in determining the velocity, temperature, and particle contours in a characterized walled area. Besides, we have displayed various nooks utilizing different ventilation frameworks to discover which framework would give better outcomes to decrease infection transmission. Our investigation would provide how varying flow rates in a room at an outlet could be effective in reducing virus dissemination, as this model could be applied to cafes, cinemas, inns, and above all emergency clinics where individuals remain in an enclosed air-conditioned room
    corecore