4 research outputs found

    The Effect of Platelet Rich Plasma (PRP) in Anterior Cruciate Ligament (ACL) Reconstruction Surgery

    Get PDF
    A torn in anterior cruciate ligament (ACL) caused by interference with the proprioceptive function of the knee joint can result in decreased function and other joint structure degradation that ultimately affect to daily activities. Platelet rich plasma (PRP) is widely used in recent studies to improve the healing of soft tissue injuries because it contains a lot of growth factor. This study was to determine the effect of platelet rich plasma in ACL reconstruction surgery. ACL reconstruction patients either with or without PRP were evaluated with Joint Position Sense (JPS) and Threshold To Detection of Passive Motion (TTDPM) measurements and the results were compared. From this study found 20 patients who had ACL reconstruction performed either with or without PRP. The test results showed statistically significant differences JPS in patients with ACL reconstruction who given PRP and not, at angle of 30Ëš (p=0,037) and 45Ëš (p=0,034). It also obtained a non-significant difference TTDPM in both groups (p=0,172). The conclusion obtained in this study is the addition of platelet rich plasma in patients with ACL reconstruction of knee joint can improve the function of JPS at an angle of 30Ëš and 45Ëš, while the function of TTDPM is not increased significantly

    Regeneration Mechanism of Full Thickness Cartilage Defect Using Combination of Freeze Dried Bovine Cartilage Scaffold - Allogenic Bone Marrow Mesenchymal Stem Cells - Platelet Rich Plasma Composite (SMPC) Implantation

    Get PDF
    Cartilage defect has become serious problem for orthopaedic surgeon and patients because of its difficult healing that might occur when articular cartilage damage never reach subchondral layer. In this study, we used combination of freeze dried bovine cartilage (FDBC) scaffold, bone marrow mesenchymal stem cells (BM-MSCs), and platelet rich plasma (PRP) composite (SMPC) implanted in full thickness cartilage defect. This study is to explain its regeneration mechanism. This is true experimental research with post-test only control group design using New Zealand White Rabbit. 50 rabbits is divided into three groups of SMPC, BM-MSCs and FDBC. 37 rabbits evaluated after twelve weeks. Histopathologic examination showed the number of chondrocytes, collagen thickness and cartilage width are highest on SMPC group. Immunohistochemical examination showed SMPC group has the highest number of chondroprogenitor cells express FGF-2R, Sox-9, and MAPK. Brown Forsythe test resulted in significant increase the number of chondrocytes (p=0,010), collagen thickness (p=0,000), and cartilage surface width (p=0,015), and increase FGF-2R (p=0,000), MAPK (p=0,000), and Sox-9 (p=0,000) on SMPC group. Using path analysis, there is strong influence from FGF-2R, MAPK, and Sox-9 to the increase of chondrocytes, collagen thickness, and cartilage surface width. Hence, SMPC implantation mechanism of full thickness cartilage defect regeneration can be explained

    Physicobiochemical Characteristics and Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in Biodegradable Porous Sponge Bovine Cartilage Scaffold

    Get PDF
    Tissue engineering had been believed to overcome the limitation of cartilage lesions treatment. Nowadays the studies focus on using mesenchymal stem cells in scaffold. A biodegradable porous sponge bovine cartilage scaffold is expected to have the physicobiochemical characterization to promote chondrogenic differentiation of hBM-MSCs. Scaffold from bovine cartilage was printed in 5 mm diameter sponge, categorized into nondecellularized (SBCS) and decellularized (DSBCS). Physical characteristics (pore diameter and interconnectivity) were done using a Scanning Electron Microscope (SEM). Biodegradability assessment used Phosphate Buffered Saline in 15, 30, 60 minutes, 6, 24, 48, 72 hours, and 1, 2 weeks. The swelling ratios were counted in 5, 10, 15, 30, 60, and 360 minutes. Biochemical characteristics were obtained by enzyme-linked immunosorbent assay for type II collagen, aggrecan, and Transforming Growth Factors-β (TGF-β). Data were statistically compared. hBM-MSCs were seeded on both scaffolds. Histological examination used hematoxylin-eosin taken at the 2nd and 4th weeks after seeding. There was no significant difference (p=0.473; p=0.142) on mean porosity 90.07 ± 4.64% vs. 88.93 ± 4.18% and pore diameter 111.83 ± 14.23 μm vs. 105.29 ± 11.14 μm assessment between SBCS and DSBCS groups. Scaffolds from both groups showed pore interconnectivity. DSBCS group had faster biodegradability. SBCS group sweals better. SBCS group contains type II collagen, aggrecan, and TGF-β with mean values 380.78 ± 18.63 ng/ml, 30.71 ± 4.50 ng/ml, and 130.12 ± 7.73 ng/ml, respectively, while DSBCS contained type II collagen, aggrecan, and TGF-β with mean values 64.83 ± 13.54 ng/ml, 8.41 ± 2.38 ng/ml, and 16.39 ± 4.49 ng/ml, respectively. The results were statistically different (p<0.001). Chondrocytes were found within scaffold on the 2nd and 4th weeks. Physicobiochemical characteristic of biodegradable sponge bovine cartilage scaffold promotes chondrogenic differentiation of hBM-MSCs
    corecore