5 research outputs found

    Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets

    No full text
    The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment. PCL, PCL + RGD + VEGF (PCL + R + V), PCL + RGD + Laminin (PCL + R + L), PLGA and PLGA + Gelatin (PLGA + G) scaffolds were implanted into the subcutaneous space of immunodeficient Rag mice. After four weeks, neonatal porcine islets (NPIs) were transplanted within the lumen of the scaffolds or under the kidney capsule (KC). Graft function was evaluated by blood glucose, serum porcine insulin, glucose tolerance tests, graft cellular insulin content and histologically. PLGA and PLGA + G scaffold recipients achieved significantly superior euglycemia rates (86% and 100%, respectively) compared to PCL scaffold recipients (0% euglycemic) (* p p p p p < 0.05). This study demonstrates that the bioabsorption of PLGA-based fibrous scaffolds is a key factor that facilitates the function of NPIs transplanted subcutaneously in diabetic mice

    Molecular Retention Limitations for Prevascularized Subcutaneous Sites for Islet Transplantation

    No full text
    Beta cell replacement therapies utilizing the subcutaneous space have inherent advantages to other sites: the potential for increased accessibility, noninvasive monitoring, and graft extraction. Site prevascularization has been developed to enhance islet survivability in the subcutaneous zone while minimizing potential foreign body immune responses. Molecular communication between the host and prevascularized implant site remains ill-defined. Poly(ethylene oxide)s (PEOs) of various hydrated radii (i.e., ∼11–62 Å) were injected into prevascularized subcutaneous sites in C57BL/6 mice, and the clearance and organ biodistribution were characterized. Prevascularization formed a barrier that confined the molecules compared with the unmodified site. Molecular clearance from the prevascularized site was inversely proportional to the molecular weight. The upper limit in molecular size for entering the vasculature to be cleared was determined to be 35 kDa MW PEO. These findings provide insight into the impact of vascularization on molecular retention at the injection site and the effect of molecular size on the mobility of hydrophilic molecules from the prevascularized site to the host. This information is necessary for optimizing the transplantation site for increasing the beta cell graft survival

    Developing Hybrid Polymer Scaffolds Using Peptide Modified Biopolymers for Cell Implantation

    No full text
    Polymeric scaffolds containing biomimics offer exciting therapies with broad potential impact for cellular therapies and thereby potentially improve success rates. Here we report the designing and fabrication of a hybrid scaffold that can prevent a foreign body reaction and maintain cell viability. A biodegradable acrylic based cross-linkable polycaprolactone based polymer was developed and using a multihead electrospinning station to fabricate hybrid scaffolds. This consists of cell growth factor mimics and factors to prevent a foreign body reaction. Transplantation studies were performed subcutaneously and in epididymal fat pad of immuno-competent Balb/c mice and immuno-suppressed B6 Rag1 mice and we demonstrated extensive neo-vascularization and maintenance of islet cell viability in subcutaneously implanted neonatal porcine islet cells for up to 20 weeks of post-transplant. This novel approach for cell transplantation can improve the revascularization and allow the integration of bioactive molecules such as cell adhesion molecules, growth factors, etc

    Nanothin Conformal Coating with Poly(N-vinylpyrrolidone) and Tannic Acid (PVPON/TA) Preserves Murine and Human Pancreatic Islets Function

    No full text
    Beta cell replacement therapies can restore glycemic control to select individuals living with type 1 diabetes. However, the obligation of lifelong immunosuppression restricts cell therapies from replacing exogenous insulin administration. Encapsulation strategies can reduce the inherent adaptive immune response; however, few are successfully translated into clinical testing. Herein, we evaluated if the conformal coating of islets with poly(N-vinylpyrrolidone) (PVPON) and tannic acid (TA) (PVPON/TA) could preserve murine and human islet function while conferring islet allograft protection. In vitro function was evaluated using static glucose-stimulated insulin secretion, oxygen consumption rates, and islet membrane integrity. In vivo function was evaluated by transplanting human islets into diabetic immunodeficient B6.129S7-Rag1tm1Mom/J (Rag-/-) mice. The immunoprotective capacity of the PVPON/TA-coating was assessed by transplanting BALB/c islets into diabetic C57BL/6 mice. Graft function was evaluated by non-fasting blood glucose measurements and glucose tolerance testing. Both coated and non-coated murine and human islets exhibited indistinguishable in vitro potency. PVPON/TA-coated and control human islets were able to restore euglycemia post-transplant. The PVPON/TA-coating as monotherapy and adjuvant to systemic immunosuppression reduced intragraft inflammation and delayed murine allograft rejection. This study demonstrates that PVPON/TA-coated islets may be clinically relevant as they retain their in vitro and in vivo function while modulating post-transplant immune responses

    Long-Term Survival and Induction of Operational Tolerance to Murine Islet Allografts by Co-Transplanting Cyclosporine A Microparticles and CTLA4-Ig

    No full text
    One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique. CsA microparticles alone significantly delayed islet allograft rejection compared to islets alone (p + and CD8+ cells, p + cells, p IL-6, IL-10, INF-γ, and TNF-α; p CCL2, CCL5, CCL22, and CXCL10; p + and intra-graft FoxP3+ T regulatory cells. The rapid rejection of third-party skin grafts (C3H) in islet allograft recipients suggests that CsA microparticles + CTLA4-Ig therapy induced operational tolerance. This study demonstrates that localized CsA drug delivery plus short-course systemic immunosuppression promotes an immune protective transplant niche for allogeneic islets
    corecore