426 research outputs found

    Regulation of arousal and performance of a healthy non-human primate using closed-loop central thalamic deep brain stimulation

    Get PDF
    Application of closed-loop approaches in systems neuroscience and brain-computer interfaces holds great promise for revolutionizing our understanding of the brain and for developing novel neuromodulation strategies to restore lost function. The anterior forebrain mesocircuit (AFM) of the mammalian brain is hypothesized to underlie arousal regulation of the cortex and striatum, and support cognitive functions during wakefulness. Dysfunction of arousal regulation is hypothesized to contribute to cognitive dysfunctions in various neurological disorders, and most prominently in patients following traumatic brain injury (TBI). Several clinical studies have explored the use of daily central thalamic deep brain stimulation (CT-DBS) within the AFM to restore consciousness and executive attention in TBI patients. In this study, we explored the use of closed-loop CT-DBS in order to episodically regulate arousal of the AFM of a healthy non-human primate (NHP) with the goal of restoring behavioral performance. We used pupillometry and near real-time analysis of ECoG signals to episodically initiate closed-loop CT-DBS and here we report on our ability to enhance arousal and restore the animal's performance. The initial computer based approach was then experimentally validated using a customized clinicalgrade DBS device, the DyNeuMo-X, a bi-directional research platform used for rapidly testing closed-loop DBS. The successful implementation of the DyNeuMo-X in a healthy NHP supports ongoing clinical trials employing the internal DyNeuMo system (NCT05437393, NCT05197816) and our goal of developing and accelerating the deployment of novel neuromodulation approaches to treat cognitive dysfunction in patients with structural brain injuries and other etiologies

    CT AND MRI OF THYROGLOSSAL DUCT CYST

    Get PDF
    The thyroglossal duct is a narrow tubular structure connecting the primordium of the thyroid gland to the tongue in the midline. If the duct does not involute at 8-10th weeks of gestation, secretion for infection or inflammation causes a thyroglossal duct cyst (TDC). TDC accounts for 70% of all congenital neck anomalies. The aim of this paper is to describe MR and CT findings of TDC including 3d MR sequences and a rare branched thyroglossal duct cyst

    Noise estimation from averaged diffusion weighted images: Can unbiased quantitative decay parameters assist cancer evaluation?

    Get PDF
    Purpose: Multiexponential decay parameters are estimated from diffusion-weighted-imaging that generally have inherently low signal-to-noise ratio and non-normal noise distributions, especially at high b-values. Conventional nonlinear regression algorithms assume normally distributed noise, introducing bias into the calculated decay parameters and potentially affecting their ability to classify tumors. This study aims to accurately estimate noise of averaged diffusion-weighted-imaging, to correct the noise induced bias, and to assess the effect upon cancer classification. Methods: A new adaptation of the median-absolute-deviation technique in the wavelet-domain, using a closed form approximation of convolved probability-distribution-functions, is proposed to estimate noise. Nonlinear regression algorithms that account for the underlying noise (maximum probability) fit the biexponential/stretched exponential decay models to the diffusion-weighted signal. A logistic-regression model was built from the decay parameters to discriminate benign from metastatic neck lymph nodes in 40 patients. Results: The adapted median-absolute-deviation method accurately predicted the noise of simulated (R=0.96) and neck diffusion-weighted-imaging (averaged once or four times). Maximum probability recovers the true apparent-diffusion-coefficient of the simulated data better than nonlinear regression (up to 40%), whereas no apparent differences were found for the other decay parameters. Conclusions: Perfusion-related parameters were best at cancer classification. Noise-corrected decay parameters did not significantly improve classification for the clinical data set though simulations show benefit for lower signal-to-noise ratio acquisitions. © 2013 Wiley Periodicals, Inc

    A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis

    Get PDF
    The aim of this work is to compare Bayesian Inference for nonlinear models with commonly used traditional non-linear regression (NR) algorithms for estimating tracer kinetics in Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI). The algorithms are compared in terms of accuracy, and reproducibility under different initialization settings. Further it is investigated how a more robust estimation of tracer kinetics affects cancer diagnosis. The derived tracer kinetics from the Bayesian algorithm were validated against traditional NR algorithms (i.e. Levenberg-Marquardt, simplex) in terms of accuracy on a digital DCE phantom and in terms of goodness-of-fit (Kolmogorov-Smirnov test) on ROI-based concentration time courses from two different patient cohorts. The first cohort consisted of 76 men, 20 of whom had significant peripheral zone prostate cancer (any cancer-core-length (CCL) with Gleason>3+3 or any-grade with CCL>=4mm) following transperineal template prostate mapping biopsy. The second cohort consisted of 9 healthy volunteers and 24 patients with head and neck squamous cell carcinoma. The diagnostic ability of the derived tracer kinetics was assessed with receiver operating characteristic area under curve (ROC AUC) analysis. The Bayesian algorithm accurately recovered the ground-truth tracer kinetics for the digital DCE phantom consistently improving the Structural Similarity Index (SSIM) across the 50 different initializations compared to NR. For optimized initialization, Bayesian did not improve significantly the fitting accuracy on both patient cohorts, and it only significantly improved the ve ROC AUC on the HN population from ROC AUC=0.56 for the simplex to ROC AUC=0.76. For both cohorts, the values and the diagnostic ability of tracer kinetic parameters estimated with the Bayesian algorithm weren't affected by their initialization. To conclude, the Bayesian algorithm led to a more accurate and reproducible quantification of tracer kinetic parameters in DCE-MRI, improving their ROC-AUC and decreasing their dependence on initialization settings

    DIFFERENT LOCATIONS OF ENDOMETRIOSIS IN 86 PATIENTS: A SINGLE- CENTRE STUDY.

    Get PDF
    Endometriosis is an important gynecologic disorder defined as the presence of functional endometrial glands and stroma outside the uterine cavity. Prevalence of endometriosis is 6-10% in the general population, but rises to 35-50% in women with pelvic pain or infertility or both. The aim of this study was to retrospectively review the different locations of pelvic and extrapelvic endometriosis occurred in our Department during last 3 years
    corecore