5 research outputs found

    Controlled Wavelet Domain Sparsity for X-ray Tomography

    No full text
    Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter Ό > 0 is analogous to the notoriously difficult problem of picking the optimal regularization parameter in Tikhonov regularization. Here, a novel automatic method is introduced for choosing Ό, based on a control algorithm driving the sparsity of the reconstruction to an a priori known ratio of nonzero versus zero wavelet coefficients in the unknown

    Shearlet-based regularization in sparse dynamic tomography

    No full text
    Classical tomographic imaging is soundly understood and widely employed in medicine, nondestructive testing and security applications. However, it still o↔ers many challenges when it comes to dynamic tomography. Indeed, in classical tomography, the target is usually assumed to be stationary during the data acquisition, but this is not a realistic model. Moreover, to ensure a lower X-ray radiation dose, only a sparse collection of measurements per time step is assumed to be available. With such a set up, we deal with a sparse data, dynamic tomography problem, which clearly calls for regularization, due to the loss of information in the data and the ongoing motion. In this paper, we propose a 3D variational formulation based on 3D shearlets, where the third dimension accounts for the motion in time, to reconstruct a moving 2D object. Results are presented for real measured data and compared against a 2D static model, in the case of fan-beam geometry. Results are preliminary but show that better reconstructions can be achieved when motion is taken into account

    An automatic regularization method:an application for 3-D X-ray micro-CT reconstruction using sparse data

    No full text
    Abstract X-ray tomography is a reliable tool for determining the inner structure of 3-D object with penetrating X-rays. However, traditional reconstruction methods, such as Feldkamp-Davis-Kress (FDK), require dense angular sampling in the data acquisition phase leading to long measurement times, especially in X-ray micro-tomography to obtain high-resolution scans. Acquiring less data using greater angular steps is an obvious way for speeding up the process and avoiding the need to save huge data sets. However, computing 3-D reconstruction from such a sparsely sampled data set is difficult because the measurement data are usually contaminated by errors, and linear measurement models do not contain sufficient information to solve the problem in practice. An automatic regularization method is proposed for robust reconstruction, based on enforcing sparsity in the 3-D shearlet-transform domain. The inputs of the algorithm are the projection data and a priori known expected degree of sparsity, denoted as 0 <; C pr ≀ 1. The number Cpr can be calibrated from a few dense-angle reconstructions and fixed. Human subchondral bone samples were tested, and morphometric parameters of the bone reconstructions were then analyzed using standard metrics. The proposed method is shown to outperform the baseline algorithm (FDK) in the case of sparsely collected data. The number of X-ray projections can be reduced up to 10% of the total amount 300 projections over 180° with uniform angular step while retaining the quality of the reconstruction images and of the morphometric parameters
    corecore