4,191 research outputs found

    Study of non-equilibrium effects and thermal properties of heavy ion collisions using a covariant approach

    Full text link
    Non-equilibrium effects are studied using a full Lorentz-invariant formalism. Our analysis shows that in reactions considered here, no global or local equilibrium is reached. The heavier masses are found to be equilibrated more than the lighter systems. The local temperature is extracted using hot Thomas Fermi formalism generalized for the case of two interpenetrating pieces of nuclear matter. The temperature is found to vary linearly with bombarding energy and impact parameter whereas it is nearly independent of the mass of the colliding nuclei. This indicates that the study of temperature with medium size nuclei is also reliable. The maximum temperatures obtained in our approach are in a nice agreement with earlier calculations of other approaches. A simple parametrization of maximal temperature as a function of the bombarding energy is also given.Comment: LaTex-file, 17 pages, 8 figures (available upon request), Journal of Physics G20 (1994) 181

    Nuclear Dynamics at the Balance Energy

    Full text link
    We study the mass dependence of various quantities (like the average and maximum density, collision rate, participant-spectator matter, temperature as well as time zones for higher density) by simulating the reactions at the energy of vanishing flow. This study is carried out within the framework of Quantum Molecular Dynamics model. Our findings clearly indicate an existence of a power law in all the above quantities calculated at the balance energy. The only significant mass dependence was obtained for the temperature reached in the central sphere. All other quantities are rather either insensitive or depend weakly on the system size at balance energy. The time zone for higher density as well as the time of maximal density and collision rate follow a power law inverse to the energy of vanishing flow.Comment: 9 figures, Submitted to Phys. Rev.

    Microscopic approach to the spectator matter fragmentation from 400 to 1000 AMeV

    Full text link
    A study of multifragmentation of gold nuclei is reported at incident energies of 400, 600 and 1000 MeV/nucleon using microscopic theory. The present calculations are done within the framework of quantum molecular dynamics (QMD) model. The clusterization is performed with advanced sophisticated algorithm namely \emph{simulated annealing clusterization algorithm} (SACA) along with conventional spatial correlation method. A quantitative comparison of mean multiplicity of intermediate mass fragments with experimental findings of ALADiN group gives excellent agreement showing the ability of SACA method to reproduce the fragment yields. It also emphasizes the importance of clustering criterion in describing the fragmentation process within semi-classical model

    Mass independence and asymmetry of the reaction: Multi-fragmentation as an example

    Full text link
    We present our recent results on the fragmentation by varying the mass asymmetry of the reaction between 0.2 and 0.7 at an incident energy of 250 MeV/nucleon. For the present study, the total mass of the system is kept constant (ATOT = 152) and mass asymmetry of the reaction is defined by the asymmetry parameter (? = | (AT - AP)/(AT + AP) |). The measured distributions are shown as a function of the total charge of all projectile fragments, Zbound. We see an interesting outcome for rise and fall in the production of intermediate mass fragments (IMFs) for large asymmetric colliding nuclei. This trend, however, is completely missing for large asymmetric nuclei. Therefore, experiments are needed to verify this prediction

    Isospin effects on the mass dependence of balance energy

    Full text link
    We study the effect of isospin degree of freedom on balance energy throughout the mass range between 50 and 350 for two sets of isotopic systems with N/Z = 1.16 and 1.33 as well as isobaric systems with N/Z = 1.0 and 1.4. Our findings indicate that different values of balance energy for two isobaric systems may be mainly due to the Coulomb repulsion. We also demonstrate clearly the dominance of Coulomb repulsion over symmetry energy.Comment: 5 pages, 3 figures In this version the discussion is in terms of N/Z whereas in the journal the whole discussion is in terms of N/A. The conclusions remain unaffecte

    Domain Growth in Random Magnets

    Get PDF
    We study the kinetics of domain growth in ferromagnets with random exchange interactions. We present detailed Monte Carlo results for the nonconserved random-bond Ising model, which are consistent with power-law growth with a variable exponent. These results are interpreted in the context of disorder barriers with a logarithmic dependence on the domain size. Further, we clarify the implications of logarithmic barriers for both nonconserved and conserved domain growth.Comment: 7 pages, 4 figure

    The study of multifragmentation around transition energy in intermediate energy heavy-ion collisions

    Full text link
    Fragmentation of light charged particles is studied for various systems at different incident energies between 50 and 1000 MeV/nucleon. We analyze fragment production at incident energies above, below and at transition energies using the isospin dependent quantum molecular dynamics(IQMD) model. The trends observed for the fragment production and rapidity distributions depend upon the incident energy, size of the fragments, composite mass of the reacting system as well as on the impact parameter of the reaction. The free nucleons and light charged particles show continous homogeneous changes irrespective of the transition energies indicating that there is no relation between the transition energy and production of the free as well as light charged particles

    Analytical parametrization of fusion barriers using proximity potentials

    Full text link
    Using the three versions of proximity potentials, namely proximity 1977, proximity 1988, and proximity 2000, we present a pocket formula for fusion barrier heights and positions. This was achieved by analyzing as many as 400 reactions with mass between 15 and 296. Our parametrized formula can reproduced the exact barrier heights and positions within an accuracy of ±1\pm1%. A comparison with the experimental data is also in good agreement.Comment: 12 pages, 5 figure

    Simulated Annealing Clusterization Algorithm for Studying the Multifragmentation

    Get PDF
    We present the details of the numerical realization of the recently advanced algorithm developed to identify the fragmentation in heavy ion reactions. This new algorithm is based on the Simulated Annealing method and is dubbed as Simulated Annealing Clusterization Algorithm [SACA]. We discuss the different parameters used in the Simulated Annealing method and present an economical set of the parameters which is based on the extensive analysis carried out for the central and peripheral collisions of Au-Au, Nb-Nb and Pb-Pb. These parameters are crucial for the success of the algorithm. Our set of optimized parameters gives the same results as the most conservative choice, but is very fast. We also discuss the nucleon and fragment exchange processes which are very important for the energy minimization and finally present the analysis of the reaction dynamics using the new algorithm. This algorithm is can be applied whenever one wants to identify which of a given number of constituents form bound objects
    • …
    corecore