43 research outputs found

    International survey on the management of esophageal atresia

    Get PDF
    IntroductionBecause many aspects of the management of esophageal atresia (EA) are still controversial, we evaluated the practice patterns of this condition across Europe. MethodsA survey was completed by 178 delegates (from 45 [27 European] countries; 88% senior respondents) at the EUPSA-BAPS 2012. ResultsApproximately 66% of respondents work in centers where more than five EA repairs are performed per year. Preoperatively, 81% of respondents request an echocardiogram, and only 43% of respondents routinely perform preoperative bronchoscopy. Approximately 94% of respondents prefer an open approach, which is extrapleural in 71% of respondents. There were no differences in use of thoracoscopy between Europeans (10%) and non-Europeans (11%, p=nonsignificant). Approximately 60% of respondents measure the gap intraoperatively. A transanastomotic tube (90%) and chest drain (69%) are left in situ. Elective paralysis is adopted by 56% of respondents mainly for anastomosis tension (65%). About 72% of respondents routinely request a contrast study on postoperative day 7 (2-14). Approximately 54% of respondents use parenteral nutrition, 40% of respondents start transanastomotic feeds on postoperative day 1, and 89% of respondents start oral feeds after postoperative day 5. Pure EA: 46% of respondents work in centers that repair two or more than two pure EA a year. About 60% of respondents opt for delayed primary anastomosis at 3 months (1-12 months) with gastrostomy formation without esophagostomy. Anastomosis is achieved with open approach by 85% of respondents. About 47% of respondents attempt elongation of esophageal ends via Foker technique (43%) or with serial dilations with bougies (41%). Approximately 67% of respondents always attempt an anastomosis. Gastric interposition is the commonest esophageal substitution. ConclusionMany aspects of EA management are lacking consensus. Minimally invasive repair is still sporadic. We recommend establishment of an EA registry

    Congenital diaphragmatic hernia and retinoids: searching for an etiology

    Get PDF
    Congenital diaphragmatic hernia (CDH) is a major life-threatening cause of respiratory failure in the newborn. Recent data reveal the role of a retinoid-signaling pathway disruption in the pathogenesis of CDH. We describe the epidemiology and pathophysiology of human CDH, the metabolism of retinoids and the implications of retinoids in the development of the diaphragm and lung. Finally, we describe the existing evidence of a disruption of the retinoid-signaling pathway in CDH

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)
    corecore