117 research outputs found

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Risk of testicular germ-cell tumours in relation to childhood physical activity

    Get PDF
    The US Servicemen's Testicular Tumor Environmental and Endocrine Determinants (STEED) case–control study of testicular germ-cell tumours (TGCTs) enrolled participants and their mothers in 2002–2005. Hours of sports or vigorous childhood physical activity per week were ascertained for three time periods; 1st–5th grades, 6th–8th grades and 9th–12th grades. Son- and mother-reports were analysed separately and included 539 control son–mother pairs and 499 case son–mother pairs. Odds ratios and 95% confidence intervals were produced. The analysis of the sons' responses found no relationship between childhood physical activity and TGCT, while the mothers' analysis found an inverse association, which was solely due to nonseminoma. Future studies should seek to validate responses further using recorded information sources such as school records

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for β-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function

    Peroxisomal Alanine: Glyoxylate Aminotransferase AGT1 Is Indispensable for Appressorium Function of the Rice Blast Pathogen, Magnaporthe oryzae

    Get PDF
    The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes. Therefore, it may provide a means to maintain redox homeostasis in appressoria

    Reducing ultraviolet radiation exposure among outdoor workers: State of the evidence and recommendations

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Outdoor workers have high levels of exposure to ultraviolet radiation and the associated increased risk of skin cancer. This paper describes a review of: 1) descriptive data about outdoor workers' sun exposure and protection and related knowledge, attitudes, and policies and 2) evidence about the effectiveness of skin cancer prevention interventions in outdoor workplaces.</p> <p>Data sources</p> <p>Systematic evidence-based review.</p> <p>Data synthesis</p> <p>We found variable preventive practices, with men more likely to wear hats and protective clothing and women more likely to use sunscreen. Few data document education and prevention policies.</p> <p>Conclusion</p> <p>Reports of interventions to promote sun-safe practices and environments provide encouraging results, but yield insufficient evidence to recommend current strategies as effective. Additional efforts should focus on increasing sun protection policies and education programs in workplaces and evaluating whether they improve the health behavior of outdoor workers.</p

    A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    Get PDF
    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1

    Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption

    Get PDF
    Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis

    Bridging health technology assessment (HTA) with multicriteria decision analyses (MCDA): field testing of the EVIDEM framework for coverage decisions by a public payer in Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consistent healthcare decisionmaking requires systematic consideration of decision criteria and evidence available to inform them. This can be tackled by combining multicriteria decision analysis (MCDA) and Health Technology Assessment (HTA). The objective of this study was to field-test a decision support framework (EVIDEM), explore its utility to a drug advisory committee and test its reliability over time.</p> <p>Methods</p> <p>Tramadol for chronic non-cancer pain was selected by the health plan as a case study relevant to their context. Based on extensive literature review, a by-criterion HTA report was developed to provide synthesized evidence for each criterion of the framework (14 criteria for the MCDA Core Model and 6 qualitative criteria for the Contextual Tool). During workshop sessions, committee members tested the framework in three steps by assigning: 1) weights to each criterion of the MCDA Core Model representing individual perspective; 2) scores for tramadol for each criterion of the MCDA Core Model using synthesized data; and 3) qualitative impacts of criteria of the Contextual Tool on the appraisal. Utility and reliability of the approach were explored through discussion, survey and test-retest. Agreement between test and retest data was analyzed by calculating intra-rater correlation coefficients (ICCs) for weights, scores and MCDA value estimates.</p> <p>Results</p> <p>The framework was found useful by the drug advisory committee in supporting systematic consideration of a broad range of criteria to promote a consistent approach to appraising healthcare interventions. Directly integrated in the framework as a "by-criterion" HTA report, synthesized evidence for each criterion facilitated its consideration, although this was sometimes limited by lack of relevant data. Test-retest analysis showed fair to good consistency of weights, scores and MCDA value estimates at the individual level (ICC ranging from 0.676 to 0.698), thus lending some support for the reliability of the approach. Overall, committee members endorsed the inclusion of most framework criteria and revealed important areas of discussion, clarification and adaptation of the framework to the needs of the committee.</p> <p>Conclusions</p> <p>By promoting systematic consideration of all decision criteria and the underlying evidence, the framework allows a consistent approach to appraising healthcare interventions. Further testing and validation are needed to advance MCDA approaches in healthcare decisionmaking.</p

    The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function

    Get PDF
    BACKGROUND: The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. RESULTS: We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. CONCLUSIONS: Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions
    corecore