509 research outputs found

    Content Analysis of Pre- and Post-Jones Federal Appellate Cases: Implications of Jones for Fourth Amendment Search Law

    Get PDF
    This study examines the state of Fourth Amendment search law in relationship to the decision in the recent, landmark case of United States v. Jones. This study focused on the effects of the Jones decision, trespass doctrine, relative to the former precedent of Katz v. United States, reasonable expectation of privacy doctrine, and the rates of searches being found under these two tests (or a combination of both). This study used a qualitative content analysis of federal appellate cases which cited Jones and/or Katz to answer the following questions: Which tests were being used in federal appellate cases where a search was in question? And; Depending on the test being used, was a search more or less likely to be found? This study concluded, through the analysis of 34 cases pre-Jones decision and 38 cases post-Jones decision, that both tests are still being used, depending upon the parameters within the case itself (as Jones has very specific criteria for determining a search). This study also concluded that since the Jones decision, cases citing solely Jones found more searches to have occurred (100%, 11 cases) than did cases citing solely Katz (27.2%, 3 out of 11 cases) or cases which cited both (37.5%, 6 out of 16 cases)

    National evaluation of the neighbourhood nurseries: impact report

    Get PDF
    This study assessed the impact of NNI on parental employment, use of formal childcare, and take-up of benefits and tax credits, particularly for disadvantaged groups such as lone parents, low income families and ethnic minority groups

    PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 4: Maintenance document (version 3.0)

    Get PDF
    The Maintenance Document Version 3.0 is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the overall system and each program module of the system. Sufficient detail is given for program maintenance, updating, and modification. It is assumed that the reader is familiar with programming and CRAY computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few CAL language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are COS 1.11, COS 1.12, COS 1.13, and COS 1.14 on the CRAY 1S, 1M, and X-MP computing systems. The system is comprised of a data base management system, a program library, an execution control module, and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a set of CRAY procedures (PAPROCS) was created to automatically supply most of the JCL cards. Most of this document has not changed for Version 3.0. It now, however, strictly applies only to PAN AIR version 3.0. The major changes are: (1) additional sections covering the new FDP module (which calculates streamlines and offbody points); (2) a complete rewrite of the section on the MAG module; and (3) strict applicability to CRAY computing systems

    Phase-based measures of cross-frequency coupling in brain electrical dynamics under general anesthesia

    Get PDF
    The state of general anesthesia (GA) is associated with an increase in spectral power in scalp electroencephalogram (EEG) at frequencies below 40 Hz, including spectral peaks in the slow oscillation (SO, 0.1-1 Hz) and α (8-14 Hz) bands. Because conventional power spectral analyses are insensitive to possible cross-frequency coupling, the relationships among the oscillations at different frequencies remain largely unexplored. Quantifying such coupling is essential for improving clinical monitoring of anesthesia and understanding the neuroscience of this brain state. We tested the usefulness of two measures of cross-frequency coupling: the bispectrum-derived SynchFastSlow, which is sensitive to phase-phase coupling in different frequency bands, and modulogram analysis of coupling between SO phase and α rhythm amplitude. SynchFastSlow, a metric that is used in clinical depth-of-anesthesia monitors, showed a robust correlation with the loss of consciousness at the induction of propofol GA, but this could be largely explained by power spectral changes without considering cross-frequency coupling. Modulogram analysis revealed two distinct modes of cross-frequency coupling under GA. The waking and two distinct states under GA could be discriminated by projecting in a two-dimensional phase space defined by the SynchFastSlow and the preferred SO phase of α activity. Our results show that a stereotyped pattern of phase-amplitude coupling accompanies multiple stages of anesthetic-induced unconsciousness. These findings suggest that modulogram analysis can improve EEG based monitoring of brain state under GA.National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)National Institutes of Health (U.S.) (Grant R01-MH071847

    Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

    Get PDF
    The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr−1) is caused by both ice loss (0.28 ± 0.18 m yr−1) and firn-air loss (0.037 ± 0.026 m yr−1). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk

    Instantaneous monitoring of heart beat dynamics during anesthesia and sedation

    Get PDF
    Anesthesia-induced altered arousal depends on drugs having their effect in specific brain regions. These effects are also reflected in autonomic nervous system (ANS) outflow dynamics. To this extent, instantaneous monitoring of ANS outflow, based on neurophysiological and computational modeling, may provide a more accurate assessment of the action of anesthetic agents on the cardiovascular system. This will aid anesthesia care providers in maintaining homeostatic equilibrium and help to minimize drug administration while maintaining antinociceptive effects. In previous studies, we established a point process paradigm for analyzing heartbeat dynamics and have successfully applied these methods to a wide range of cardiovascular data and protocols. We recently devised a novel instantaneous nonlinear assessment of ANS outflow, also suitable and effective for real-time monitoring of the fast hemodynamic and autonomic effects during induction and emergence from anesthesia. Our goal is to demonstrate that our framework is suitable for instantaneous monitoring of the ANS response during administration of a broad range of anesthetic drugs. Specifically, we compare the hemodynamic and autonomic effects in study participants undergoing propofol (PROP) and dexmedetomidine (DMED) administration. Our methods provide an instantaneous characterization of autonomic state at different stages of sedation and anesthesia by tracking autonomic dynamics at very high time-resolution. Our results suggest that refined methods for analyzing linear and nonlinear heartbeat dynamics during administration of specific anesthetic drugs are able to overcome nonstationary limitations as well as reducing inter-subject variability, thus providing a potential real-time monitoring approach for patients receiving anesthesia
    • …
    corecore