30 research outputs found

    Rationale and protocol of a double-blind, randomized, placebo-controlled trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich Ataxia (DMF-FA-201)

    Get PDF
    IntroductionFriedreich Ataxia (FRDA) is an autosomal recessive neurodegenerative disorder that causes gait and limb ataxia, dysarthria, and impaired vibratory sense, with cardiomyopathy being the predominant cause of death. There is no approved therapy, which results in the use of symptomatic treatments and the chronic support of physiotherapy. Dimethyl fumarate (DMF) is a fumaric acid ester used for the treatment of psoriasis and Multiple Sclerosis (MS). It induces Nrf2 in vitro and in vivo, and it increases frataxin in FRDA patient lymphoblasts, in mouse models, and in MS treated patients.MethodsThe aim of our study is to investigate if DMF can increase the expression of the FXN gene and frataxin protein and ameliorate in-vivo detectable measures of mitochondrial dysfunction in FRDA. The study is composed of a screening visit and two sequential 12-week phases: a core phase and an extension phase. During the first phase (core), patients will be randomly assigned to either the DMF or a placebo group in a 1:1 ratio. During the first week, patients will receive a total daily dose of 240 mg of DMF or placebo; from the second week of treatment, the dose will be increased to two 120 mg tablets BID for a total daily dose of 480 mg. During the second phase (extension), all patients will be treated with DMF. EudraCT number 2021-006274-23.EndpointsThe primary endpoint will be a change in FXN gene expression level after 12 weeks of treatment. Secondary endpoints will be frataxin protein level, cardiopulmonary exercise test outputs, echocardiographic measures, Nrf2 pathway and mitochondrial biogenesis gene expression, safety, clinical scales, and quality of life scales.ConclusionsThis is the first study aimed at exploring the ability of DMF, an already available treatment for MS and psoriasis, to correct the biological deficits of FRDA and potentially improve mitochondrial respiration in-vivo

    A Combined Nucleic Acid and Protein Analysis in Friedreich Ataxia: Implications for Diagnosis, Pathogenesis and Clinical Trial Design

    Get PDF
    BACKGROUND: Friedreich's ataxia (FRDA) is the most common hereditary ataxia among caucasians. The molecular defect in FRDA is the trinucleotide GAA expansion in the first intron of the FXN gene, which encodes frataxin. No studies have yet reported frataxin protein and mRNA levels in a large cohort of FRDA patients, carriers and controls. METHODOLOGY/PRINCIPAL FINDINGS: We enrolled 24 patients with classic FRDA phenotype (cFA), 6 late onset FRDA (LOFA), all homozygous for GAA expansion, 5 pFA cases who harbored the GAA expansion in compound heterozygosis with FXN point mutations (namely, p.I154F, c.482+3delA, p.R165P), 33 healthy expansion carriers, and 29 healthy controls. DNA was genotyped for GAA expansion, mRNA/FXN was quantified in real-time, and frataxin protein was measured using lateral-flow immunoassay in peripheral blood mononuclear cells (PBMCs). Mean residual levels of frataxin, compared to controls, were 35.8%, 65.6%, 33%, and 68.7% in cFA, LOFA, pFA and healthy carriers, respectively. Comparison of both cFA and pFA with controls resulted in 100% sensitivity and specificity, but there was overlap between LOFA, carriers and controls. Frataxin levels correlated inversely with GAA1 and GAA2 expansions, and directly with age at onset. Messenger RNA expression was reduced to 19.4% in cFA, 50.4% in LOFA, 52.7% in pFA, 53.0% in carriers, as compared to controls (p<0.0001). mRNA levels proved to be diagnostic when comparing cFA with controls resulting in 100% sensitivity and specificity. In cFA and LOFA patients mRNA levels correlated directly with protein levels and age at onset, and inversely with GAA1 and GAA2. CONCLUSION/SIGNIFICANCE: We report the first explorative study on combined frataxin and mRNA levels in PBMCs from a cohort of FRDA patients, carriers and healthy individuals. Lateral-flow immunoassay differentiated cFA and pFA patients from controls, whereas determination of mRNA in q-PCR was sensitive and specific only in cFA

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    The C-Terminal Cross-linked Telopeptide of Type I Collagen (CTX-I) as a Potential Cardiomyopathy Biomarker in Friedreich Ataxia Patients

    No full text
    : Friedreich's ataxia (FRDA) is the most common inherited recessive ataxia. Cardiomyopathy (CM) with myocardial hypertrophy is the predominant cause of death. The presence of CM is variable and the risk factors for cardiac involvement are not entirely clear. Markers of collagen degradation, such as C-terminal cross-linked telopeptide of type I collagen (CTX-I), seem to be associated with unfavorable cardiovascular outcomes. The aim of our study was to measure serum CTX-I as a marker of cardiac fibrosis in FRDA patients. We measured serum CTX value in twenty-five FRDA patients (mean age, 31.3 ± 14.7 years) and nineteen healthy controls (mean age, 34.0 ± 13.5 years). Patients underwent echocardiography and SARA scale evaluation. CTX values were significantly higher in the patients than in the control group (31.82 ± 2.27 vs 16.44 ± 1.6 μg/L; p = 0.006). CTX-I was inversely correlated with age (R =  - 0,535; n = 44; p < 0.001). The regression model identified disease duration and TT3 levels to be independent predictors of CTX-I (model R2 = 0.938; intercept - 64.0, p = 0.071; disease duration coefficient =  - 2.34, p = 0.005; TT3 coefficient = 127.17, p = 0.011). CTX-I, a biomarkers of collagen turnover, is elevated in FRDA and should provide complementary information to identify patients with high cardiological risk even if longitudinal studies are needed to define the role of this serologic marker of collagen metabolism in the natural history of cardiomyopathy in FRDA patients

    Peripheral markers of autophagy in polyglutamine diseases

    No full text
    Polyglutamine disorders are neurodegenerative diseases that share a CAG repeat expansion in the coding region, resulting in aggregated proteins that can be only degraded through aggrephagy. We measured the expression of autophagy genes in peripheral blood mononuclear cells of 20 patients with Huntington's disease (HD), 20 with spinocerebellar ataxia type 2 (SCA2), and 20 healthy individuals. HD patients showed increased expression of MAP1LC3B (+ 43%; p = 0.048), SQSTM1 (+ 49%; p = 0.002), and WDFY3 (+ 89%; p < 0.001). SCA2 patients had increased expression of WDFY3 (+ 69%; p < 0.001). We show that peripheral markers of autophagy are elevated in polyQ diseases, and this is particularly evident in HD

    Dimethyl Fumarate Mediates Nrf2-dependent Mitochondrial Biogenesis in Mice and Humans

    No full text
    The induction of mitochondrial biogenesis could potentially alleviate mitochondrial and muscle disease. We show here that dimethyl fumarate (DMF) dose-dependently induces mitochondrial biogenesis and function dosed to cells in in vitro, and also dosed in vivo to mice and humans. The induction of mitochondrial gene expression is more dependent on its target Nrf2 than hydroxycarboxylic acid receptor 2 (HCAR2). Thus, DMF induces mitochondrial biogenesis primarily through its action on Nrf2, and is the first drug demonstrated to increase mitochondrial biogenesis with in vivo human dosing. The observation that DMF stimulates mitochondrial biogenesis, gene expression and function suggests that it could be considered for mitochondrial disease therapy and/or therapy in muscle disease in which mitochondrial function is important
    corecore