4,667 research outputs found
Chromatic Information and Feature Detection in Fast Visual Analysis
The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-and-white movies provide compelling representations of real world scenes. Also, the contrast sensitivity of color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. We conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in
Recommended from our members
Chromatic Information and Feature Detection in Fast Visual Analysis
The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-and-white movies provide compelling representations of real world scenes. Also, the contrast sensitivity of color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. We conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in
Non-Metric Gravity I: Field Equations
We describe and study a certain class of modified gravity theories. Our
starting point is Plebanski formulation of gravity in terms of a triple B^i of
2-forms, a connection A^i and a ``Lagrange multiplier'' field Psi^ij. The
generalization we consider stems from presence in the action of an extra term
proportional to a scalar function of Psi^ij. As in the usual Plebanski general
relativity (GR) case, a certain metric can be constructed from B^i. However,
unlike in GR, the connection A^i no longer coincides with the self-dual part of
the metric-compatible spin-connection. Field equations of the theory are shown
to be relations between derivatives of the metric and components of field Psi,
as well as its derivatives, the later being in contrast to the GR case. The
equations are of second order in derivatives. An analog of the Bianchi identity
is still present in the theory, as well as its contracted version tantamount to
energy conservation equation.Comment: 21 pages, no figures (v2) energy conservation equation simplified,
note on reality conditions added (v3) minor change
Area metric gravity and accelerating cosmology
Area metric manifolds emerge as effective classical backgrounds in quantum
string theory and quantum gauge theory, and present a true generalization of
metric geometry. Here, we consider area metric manifolds in their own right,
and develop in detail the foundations of area metric differential geometry.
Based on the construction of an area metric curvature scalar, which reduces in
the metric-induced case to the Ricci scalar, we re-interpret the
Einstein-Hilbert action as dynamics for an area metric spacetime. In contrast
to modifications of general relativity based on metric geometry, no continuous
deformation scale needs to be introduced; the extension to area geometry is
purely structural and thus rigid. We present an intriguing prediction of area
metric gravity: without dark energy or fine-tuning, the late universe exhibits
a small acceleration.Comment: 52 pages, 1 figure, companion paper to hep-th/061213
Geometry and stability of dynamical systems
We reconsider both the global and local stability of solutions of
continuously evolving dynamical systems from a geometric perspective. We
clarify that an unambiguous definition of stability generally requires the
choice of additional geometric structure that is not intrinsic to the dynamical
system itself. While global Lyapunov stability is based on the choice of
seminorms on the vector bundle of perturbations, we propose a definition of
local stability based on the choice of a linear connection. We show how this
definition reproduces known stability criteria for second order dynamical
systems. In contrast to the general case, the special geometry of Lagrangian
systems provides completely intrinsic notions of global and local stability. We
demonstrate that these do not suffer from the limitations occurring in the
analysis of the Maupertuis-Jacobi geodesics associated to natural Lagrangian
systems.Comment: 22 pages, 2 figure
Propagation of light in area metric backgrounds
The propagation of light in area metric spacetimes, which naturally emerge as
refined backgrounds in quantum electrodynamics and quantum gravity, is studied
from first principles. In the geometric-optical limit, light rays are found to
follow geodesics in a Finslerian geometry, with the Finsler norm being
determined by the area metric tensor. Based on this result, and an
understanding of the non-linear relation between ray vectors and wave covectors
in such refined backgrounds, we study light deflection in spherically symmetric
situations, and obtain experimental bounds on the non-metricity of spacetime in
the solar system.Comment: 18pp, no figures, Journal versio
Development of FTK architecture: a fast hardware track trigger for the ATLAS detector
The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that
will operate at full Level-1 output rates and provide high quality tracks
reconstructed over the entire detector by the start of processing in Level-2.
FTK solves the combinatorial challenge inherent to tracking by exploiting the
massive parallelism of Associative Memories (AM) that can compare inner
detector hits to millions of pre-calculated patterns simultaneously. The
tracking problem within matched patterns is further simplified by using
pre-computed linearized fitting constants and leveraging fast DSP's in modern
commercial FPGA's. Overall, FTK is able to compute the helix parameters for all
tracks in an event and apply quality cuts in approximately one millisecond. By
employing a pipelined architecture, FTK is able to continuously operate at
Level-1 rates without deadtime. The system design is defined and studied using
ATLAS full simulation. Reconstruction quality is evaluated for single muon
events with zero pileup, as well as WH events at the LHC design luminosity. FTK
results are compared with the tracking capability of an offline algorithm.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
The Evolution of FTK, a Real-Time Tracker for Hadron Collider Experiments
We describe the architecture evolution of the highly-parallel dedicated
processor FTK, which is driven by the simulation of LHC events at high
luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track
reconstruction for future hadronic collider experiments. The processor,
organized in a two-tiered pipelined architecture, execute very fast algorithms
based on the use of a large bank of pre-stored patterns of trajectory points
(first tier) in combination with full resolution track fitting to refine
pattern recognition and to determine off-line quality track parameters. We
describe here how the high luminosity simulation results have produced a new
organization of the hardware inside the FTK processor core.Comment: 11th ICATPP conferenc
B Physics at the Tevatron: Run II and Beyond
This report provides a comprehensive overview of the prospects for B physics
at the Tevatron. The work was carried out during a series of workshops starting
in September 1999. There were four working groups: 1) CP Violation, 2) Rare and
Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and
Spectroscopy. The report also includes introductory chapters on theoretical and
experimental tools emphasizing aspects of B physics specific to hadron
colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a
Summary.Comment: 583 pages. Further information on the workshops, including
transparencies, can be found at the workshop's homepage:
http://www-theory.lbl.gov/Brun2/. The report is also available in 2-up
http://www-theory.lbl.gov/Brun2/report/report2.ps.gz or chapter-by-chapter
http://www-theory.lbl.gov/Brun2/report
- …