103 research outputs found
Soilborne Diseases and their Control
Seed and seedling diseases, root rots, and wilts are caused by a number of soilborne fungi, all of which are facultative saprophytes and can survive in soil for long periods in the absence of a susceptible host. In general, these diseases are serious yield constraints where short rotations or monoculture of legume crops are the rule. Seedling diseases and root rots are enhanced by poor seed vigor, poor seedbed preparation, and other biotic and abiotic stresses which predispose the host plant. Control of these diseases requires an integrated approach of genetic resistance/tolerance, cultural practices, appropriate seed treatments, and high seed vigor. The most economical and durable control of Fusarium wilt is to grow resistant varieties. New races of a wilt pathogen have arisen due to increased selection pressure from growing resistant varieties in short rotations but have not outpaced the development of resistant cultivars
Infestation of Transgenic Powdery Mildew-Resistant Wheat by Naturally Occurring Insect Herbivores under Different Environmental Conditions
A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low
Biotransformation of lanthanum by Aspergillus niger
Lanthanum is an important rare earth element and has many applications in modern electronics and catalyst manufacturing. However, there exist several obstacles in the recovery and cycling of this element due to a low average grade in exploitable deposits and low recovery rates by energy-intensive extraction procedures. In this work, a novel method to transform and recover La has been proposed using the geoactive properties of Aspergillus niger. La-containing crystals were formed and collected after A. niger was grown on Czapek-Dox agar medium amended with LaCl 3. Energy-dispersive X-ray analysis (EDXA) showed the crystals contained C, O, and La; scanning electron microscopy revealed that the crystals were of a tabular structure with terraced surfaces. X-ray diffraction identified the mineral phase of the sample as La 2(C 2O 4) 3·10H 2O. Thermogravimetric analysis transformed the oxalate crystals into La 2O 3 with the kinetics of thermal decomposition corresponding well with theoretical calculations. Geochemical modelling further confirmed that the crystals were lanthanum decahydrate and identified optimal conditions for their precipitation. To quantify crystal production, biomass-free fungal culture supernatants were used to precipitate La. The results showed that the precipitated lanthanum decahydrate achieved optimal yields when the concentration of La was above 15 mM and that 100% La was removed from the system at 5 mM La. Our findings provide a new aspect in the biotransformation and biorecovery of rare earth elements from solution using biomass-free fungal culture systems. </p
Molecular techniques for pathogen identification and fungus detection in the environment
Many species of fungi can cause disease in plants, animals and humans. Accurate and robust detection and quantification of fungi is essential for diagnosis, modeling and surveillance. Also direct detection of fungi enables a deeper understanding of natural microbial communities, particularly as a great many fungi are difficult or impossible to cultivate. In the last decade, effective amplification platforms, probe development and various quantitative PCR technologies have revolutionized research on fungal detection and identification. Examples of the latest technology in fungal detection and differentiation are discussed here
Biocontrol Potential of Forest Tree Endophytes
Peer reviewe
Management of Soil-Borne Diseases of Grain Legumes Through Broad-Spectrum Actinomycetes Having Plant Growth-Promoting and Biocontrol Traits
Chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.) are the two important grain legumes grown extensively in the semiarid tropics (SAT) of the world, where soils are poor in nutrients and receive inadequate/erratic rainfall. SAT regions are commonly found in Africa, Australia, and South Asia. Chickpea and pigeonpea suffer from about 38 pathogens that cause soil-borne diseases including wilt, collar rot, dry root rot, damping off, stem canker, and Ascochyta/Phytophthora blight, and of which three of them, wilt, collar rot, and dry root rot, are important in SAT regions. Management of these soil-borne diseases are hard, as no one control measure is completely effective. Advanced/delayed sowing date, solarization of soil, and use of fungicides are some of the control measures usually employed for these diseases but with little success. The use of disease-resistant cultivar is the best efficient and economical control measure, but it is not available for most of the soil-borne diseases. Biocontrol of soil-borne plant pathogens has been managed using antagonistic actinobacteria, bacteria, and fungi. Actinobacterial strains of Streptomyces, Amycolatopsis, Micromonospora, Frankia, and Nocardia were reported to exert effective control on soil-borne pathogens and help the host plants to mobilize and acquire macro- and micronutrients. Such novel actinomycetes with wide range of plant growth-promoting (PGP) and antagonistic traits need to be exploited for sustainable agriculture. This chapter gives a comprehensive analysis of important soil-borne diseases of chickpea and pigeonpea and how broad-spectrum actinomycetes, particularly Streptomyces spp., could be exploited for managing them
- …