14 research outputs found
THE EFFECT OF FLUID CATALYTIC CRACKING CATALYST WASTE ON REFRACTORY CASTABLE PROPERTIES
The fluid catalytic cracking (FCC) catalyst waste (CW) is eroded catalyst debris from the cracking unit, which is collected by
an electrostatic precipitator. CW is zeolite material, which unique properties are underused in refractory castable production
technology. This work deals with untreated CW and thermally treated - CWt. The hydration and structure development
of cementitous compositions with CW and CWt were investigated. In comparison with CW, CWt is a considerably softer
accelerating additive of cement hydration and a certain amount of this additive (10 - 20 %) markedly increases the
compressive strength of cementitious stone. The impact of CWt additive on refractory castable properties was investigated.
It was established that the increase of CWt additive content causes the increase of castable compressive strength and
decrease of shrinkage, ensures a more compact structure of castable and best thermal durability versus analogical castable
without the additive
THE EFFECT OF POZZOLANIC WASTE OF DIFFERENT NATURE ON THE HYDRATION PRODUCTS, STRUCTURE AND PROPERTIES OF HARDENED CEMENT PASTE
The paper analyses the effect of different pozzolanic waste - ground waste glass, metakaolin and addition made of ground waste glass and metakaolin, on cement hydration and physical-mechanical properties of hardened cement paste. Four batches of specimens were made for the tests. Cement (C) in the cement matrix was replaced with 5% of ground waste glass (5S), 15 % of metakaolin and mixed pozzolanic was addition (MIX 20) made of 5% of ground waste glass and 15 % of metakaolin. The best improvement of mechanical properties after 90 days of curing was observed in the specimens modified with the mixed pozzolanic addition. X-ray, TGA tests and microstructure analysis revealed that the improvement of mechanical properties is caused by the higher content of hydration products and a strong contact zone between glass particles and foam glass splinters present in metakaolin waste addition. The formation of C-S-H hydrates on the surface of glass foam splinters and in the pores was also observed. This kind of microstructure formation has a positive effect on cement matrix microstructure and physical-mechanical properties of hardened cement paste
Hemp Shive-Based Bio-Composites Bounded by Potato Starch Binder: The Roles of Aggregate Particle Size and Aspect Ratio
According to European regulations, the construction industry supports and strives to save non-renewable natural resources, increases the share of reusable resources in production and attempts to use renewable natural resources as much as possible by creating alternative building materials, such as bio-composites. Various building materials containing hemp shives (HS) are relatively popular and are often used in practice. The properties of these materials vary widely due to the usage of significantly different binders and because the parameters of the HS can significantly affect the properties of the bio-composite. Potato starch (PS), the properties of which have not been studied extensively in the past, was used as a binder in this study. Depending on the type of manufacturing process and technology employed for hemp fibre production, the HS particle shape and size can vary widely, which leads to the following statement: the properties of bio-composites produced by using the same method, but with different HS, may differ significantly. In order to investigate the effects of HS on the properties of bio-composites, including the hydro-thermal properties, an in-depth study was conducted to examine the structure, the physical properties and the particle size of HS. It was discovered that in order to obtain a material of higher compressive strength, the HS with smaller dimensions should be used; however, if enhanced thermal properties are required, the HS with longer particles should be used
THE EFFECT OF CRYSTALLIZING ADMIXTURE ON THE PROPERTIES AND SHRINKAGE OF CONCRETE
This study investigates the effect of the amount (from 0.6 % to 1.4 %) of crystallizing admixture (CA) on the shrinkage, density, porosity and mechanical properties of concrete specimens. A higher content of CA increased the total porosity of concrete from 10.6 % to 11.15 %. In contrast to the specimens containing 0.8- 1.0% of CA, the lowest amount of closed pores and highest total porosity was observed in the specimens containing 1.2 %-1.4 % of the CA. Compared to the control specimen, concrete specimens containing 1.4 % of CA showed a 5.4 % decrease in flexural strength and a 13.6 % decrease in compressive strength after 28 days of curing. The specimens containing 0.9 %-1.0 % of CA demonstrated the lowest shrinkage in the period of 190 days. The shrinkage of these specimens reduced 4.8 %-4.9 % compared to the control specimen. Higher content of CA had an opposite effect on the shrinkage, a short-term expansion of specimens was observed after 28-56 days. Taking into account all the properties of the concrete specimen, the optimum amount of CA, which could prevent cracks in the structures is 1.0% of the cement mass
Development of Cordierite Ceramics from Natural Raw Materials
Cordierite ceramics are known for their low CTE and high compressive strength values which affords them place in fields where demanding thermal and mechanical properties are required. Development of such ceramics is greatly dependent on materials used. If raw materials are used formation of additional phases and pore/glass formation is expected. The purpose of this research is to examine the process of cordierite development from mixed compositions formed from precursors of the natural raw materials as illite clay, dolomite and quartz sand and synthetic additives β MgO, Ξ³-Al2O3 and their influence on thermal and mechanical properties. It is verified that the addition of 10 wt.% of illite clay and about 20-21 wt.% dolomite in staring compositions at the sintering temperature of 1200 Β°C results in the development of dense ceramic material with perfect-shaped crystalline cordierite phase and secondary anorthite phase. Sintered cordierite ceramics have been tested, among other properties, for their compressive strength, coefficient of thermal expansion and modulus of elasticity after 20 cycles of thermal shock treatment
A Study of Metal-Cement Composites with Additives
The application of small-sized metal fillers (SMF) provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction). Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° Π² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΡΠ΅ΠΌΠ΅Π½ΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ°Ρ
ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠΠ΅ΡΠ°Π»Π»ΠΎΡΠ΅ΠΌΠ΅Π½ΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡ (ΠΠ¦Π), Π² ΡΠ°ΡΡΠ½ΠΎ-ΡΡΠΈ ΡΡΠΆΠ΅Π»ΡΠ΅ Π±Π΅ΡΠΎΠ½Ρ (Π’Π) Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΡ 4 Ρ/ΠΌ3 ΠΈ Π²ΡΡΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΒ¬ΡΡΡΡ Π΄Π»Ρ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ Π±Π°Π»Π»Π°ΡΡΠΎΠ² ΠΈ ΠΏΡΠΈΠ³ΡΡΠ·ΠΎΠ² Π² ΠΏΠΎΡΡΠΎΠ²ΠΎΠΌ ΡΡΡΠΎΒ¬ΠΈΡΠ΅Π»ΡΡΡΠ²Π΅, Π΄Π»Ρ ΠΏΠ»Π°Π²ΡΡΠΈΡ
Π½Π΅ΡΡΠ΅Π³Π°Π·ΠΎΠ²ΡΡ
ΠΏΠ»Π°ΡΡΠΎΡΠΌ, ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π·Π°Β¬ΡΠΈΡΡ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΡΡ
ΡΡΡΠ±ΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ², ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ Π³ΡΡΠ½ΡΠ°, Π·Π°ΡΠΈΡΡ ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈ Ρ. Π΄. [1]. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΠ°Π»Β¬Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Π΅ΠΉ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΎΡΡ
ΠΎΠ΄Ρ ΠΌΠ΅ΡΠ°Π»Π»ΠΎ-ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ. Π’Π°ΠΊΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΠΈ Π²ΡΒ¬ΡΠΎΠΊΡΡ ΠΈΠ·Π½ΠΎΡΠΎΡΡΠΎΠΉΠΊΠΎΡΡΡ. ΠΡΡΠΎΠΊΠΈΠ΅ Π·Π°ΡΠΈΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
ΠΏΠΎΠ»Π΅ΠΉ ΠΠ¦Π ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Π΅ΠΉ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ (35-70 %) ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΆΠ΅Π»Π΅Π·Π°, ΡΡΠ΅Π΄ΠΈ Π½ΠΈΡ
- Π±Π°ΡΠΈΡ, ΠΈΠ»ΠΌΠ΅Π½ΠΈΡ, ΠΌΠ°Π³Π½Π΅ΡΠΈΡ ΠΈ Π³Π΅ΠΌΠ°ΡΠΈΡ [2]. ΠΡΠΎΠ±ΠΎ ΡΡΠΆΠ΅Π»ΡΠ΅ ΠΠ¦Π Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΡ Π±ΠΎΠ»Π΅Π΅ 5,0 Ρ/ΠΌ' Π΄Π»Ρ Π·Π°ΡΠΈΡΡ ΠΎΡ ΡΠ°Π΄ΠΈΠΎΒ¬Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ [3] ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΠΌΠ΅ΡΠ°Π»Β¬Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π°ΠΊΠΈ Ρ Ρ
ΡΠΎΠΌΠΎΠΌ ΠΈ ΡΠ²ΠΈΠ½ΡΠΎΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΡΡΠΎΡ
ΡΠΎΠΌ, ΡΠ΅ΡΒ¬ΡΠΎΡΠΈΠ»ΠΈΡΠΈΠΉ, ΡΠ΅ΡΡΠΎΡΠΎΡΡΠΎΡ ΠΈ Π±ΠΎΡΠΎΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ.
Π ΡΠ²ΡΠ·ΠΈ Ρ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΠΎΠΈΠΌΠΎΡΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· ΠΠ¦Π Ρ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠΌΠΈ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠΌΠΈ Π²ΡΠ΅ Π±ΠΎΠ»ΡΡΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΏΡΠ΅Π΄Β¬ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ². ΠΡ
ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΒ¬Π½ΠΎΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ - Π²Π°ΠΆΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π² Π·Π°ΡΠΈΡΠ΅ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ Π½ΠΎΠ²ΡΡ
ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Ρ ΠΆΠ΅Π»Π΅Π·ΠΎΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΌΠΈ ΠΎΡΡ
ΠΎΠ΄Π°ΠΌΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΏΠ΅ΡΡΠΎΡΠΈΡΠΎΠ²Π°Π½Β¬Π½ΠΎΠΉ ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π»Π΅Π½ΡΡ, ΠΏΠΈΡΡΠΎΠ½ΠΎΠ², ΠΏΡΠ»Π΅Π²ΠΈΠ΄Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΠΎΡ ΡΠΈΠ»ΡΡΡΠΎ- Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ² ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΡΠΎΡΠΊΠΎΠ² [4-7], ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΒ¬ΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡ
ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΠ¦Π. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ²ΡΠ·ΡΡΡΠ΅Π³ΠΎ ΠΈΡΒ¬ΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΠΎΡΡΠ»Π°Π½Π΄ΡΠ΅ΠΌΠ΅Π½Ρ, ΠΏΡΡΡΠΎΠ»Π°Π½ΠΎΠ²ΡΠΉ, ΡΠ»Π°ΠΊΠΎΠ²ΡΠΉ ΠΈ Π°Π»Ρ- ΠΌΠΈΠ½Π°ΡΠΈΡΠΉ ΡΠ΅ΠΌΠ΅Π½ΡΡ [8]. ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ Π½ΠΈΠ·ΠΊΠ°Ρ ΡΠ΅Π½Π°, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅
ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Ρ Π½ΠΎΠ²ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π² ΡΡΠ΄Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡ
ΡΠ΄ΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΌΠ°ΡΠ΅Β¬ΡΠΈΠ°Π»Π°. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΠΎΡΡΠ°Π²Ρ ΠΠ¦Π ΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΎΠ²ΡΠ΅Β¬ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ.
ΠΠ΅ΡΠ°Π»Π»ΠΎΡΠ΅ΠΌΠ΅Π½ΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡ Ρ ΠΌΠ°Π»ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠ°Π»-Π»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠΌΠΈ (ΠΠΠ) ΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΎΠΊΡΡ ΠΈΠ·Π½ΠΎΡΠΎΡΡΠΎΠΉ-ΠΊΠΎΡΡΡ, Π²ΡΡΠΎΠΊΡΡ ΡΠ΅ΡΠΌΠΎΡΡΠΎΠΉΠΊΠΎΡΡΡ ΠΈ Π½ΠΈΠ·ΠΊΡΡ ΡΡΠ°Π΄ΠΊΡ. ΠΠ΄Π½Π°ΠΊΠΎ ΠΏΠΎΠ»-Π½ΠΎΡΡΡΡ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ ΡΡΠ°Π΄ΠΊΡ ΠΈ ΡΠ°ΡΡΡΠ΅ΡΠΊΠΈΠ²Π°Π½ΠΈΠ΅ Π½Π° Π³ΡΠ°Π½ΠΈΡΠ΅ ΡΠ΅ΠΌΠ΅Π½ΡΠ° ΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ΄Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ [8]. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Ρ ΠΠΠ ΡΠ»ΠΎΠΆΠ½ΠΎ ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΈΠ·-Π·Π° ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Β¬ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈ ΡΠΊΠ»Π°Π΄ΠΊΠΎΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ·-Π·Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΠ°ΡΡΠ»ΠΎΠ΅Π½ΠΈΡ Π±Π΅ΡΠΎΠ½Β¬Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. Π Π°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²ΠΈΠ΄Ρ ΠΠΠ ΠΎΠΏΠΈΡΠ°Π½Ρ Π² ΡΠ°Π±ΠΎΡΠ΅ [9].
Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²ΠΈΠ΄Ρ ΠΠΠ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΠΆΠ΅Π»Π΅Π·ΠΎΒ¬ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΎΠΏΠΈΠ»ΠΎΠΊ, ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΈΡ
Π² Π±Π΅ΡΠΎΠ½Β¬Π½ΡΡ
ΡΠΌΠ΅ΡΡΡ
, ΡΠ°ΡΡΠΈΡΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΡΡ ΠΈΠΌΠΈ ΠΏΠ΅ΡΠΎΠΊ [9-10]. ΠΠΠ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΠΠ¦Π. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ [7], ΡΡΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΠΠ ΡΠ½ΠΈΠΆΠ°Π΅Ρ ΠΏΡΠΎΡΠ½ΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Β¬ΡΠ΅Π»Ρ ΠΎΡΠ°Π΄ΠΊΠΈ ΠΊΠΎΠ½ΡΡΠ° Π±Π΅ΡΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. ΠΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΠΠ ΠΎΠ±ΡΠ°Ρ ΠΏΡΠΎΡΠ½ΠΎΡΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ° ΠΌΠΎΠΆΠ΅Ρ ΡΠ½ΠΈΠΆΠ°ΡΡΡΡ ΠΈΠ·-Π·Π° ΠΈΡ
ΠΏΠ»ΠΎΡ
ΠΎΒ¬Π³ΠΎ ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»Π° Ρ ΡΠ΅ΠΌΠ΅Π½ΡΠΎΠΌ. ΠΠ»Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΡΡΠ΅ΠΌ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ (Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Ρ - ΡΠ΅ΠΌΠ΅Π½ΡΠ½Π°Ρ ΠΌΠ°ΡΡΠΈΡΠ°) ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π½Π°Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡΡΠΏΠ΅ΡΠΏΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΡ, ΠΌΠΈΠΊΡΠΎΠΊΡΠ΅ΠΌΠ½Π΅Β¬Π·Π΅ΠΌ, ΠΌΠ΅ΡΠ°ΠΊΠ°ΠΎΠ»ΠΈΠ½, Π½Π°Π½ΠΎ-ΠΌΠΈΠΊΡΠΎΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌ [6].
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π½Π΅ΡΠ°Π·ΡΡΡΠ°ΡΡΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠ΅Π½ΠΈΠ²Π°ΡΡ ΠΏΡΠΎΡΠ½ΠΎΡΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΠ¦Π, Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΏΠΎΡ ΠΈ Π΄Π΅ΡΠ΅ΠΊΡΠΎΠ², ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡ ΡΠΎΡΡΠ°Π²Π° ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΏΠΎ ΠΎΠ±ΡΒ¬Π΅ΠΌΡ. ΠΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅Ρ ΡΠ°ΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎ Π±Π΅ΡΠΎΠ½Π°ΠΌ Ρ ΠΠΠ.
Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΠΠ ΠΈ Π΄ΠΎΠ±Π°-Π²ΠΎΠΊ Π½Π° ΠΏΡΠΎΡΠ½ΠΎΡΡΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΠ¦Π, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»Ρ-Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π΄Π»Ρ ΠΈΡ
ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π½Π΅ΡΠ°Π·ΡΡ-ΡΠ°ΡΡΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΎΠΏΒ¬ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ, ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π»ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π·ΡΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠ°Π·Π½ΡΡ
ΡΠΎΡΡΠ°Π²ΠΎΠ² ΠΈ ΠΎΡΠΎΠ±Π΅Π½Β¬Π½ΠΎΡΡΠΈ ΡΡΠ΅ΠΏΠ»Π΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Ρ Ρ ΡΠ΅ΠΌΠ΅Π½ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ
THE EFFECT OF A COMPLEX POZZOLANIC ADDITIVE CONSISTING OF MILLED GLASS AND METAKAOLIN ON THE DEGRADATION OF A CEMENTITIOUS COMPOSITE WITH GROUND WASTE GLASS CAUSED BY ALKALI-SILICA REACTION
This paper investigates the effect of partial replacement of cement by milled glass (MS), metakaolin (MK), and their mixture and partial replacement of sand by crushed glass (TS) on the physical and mechanical properties of a cementitious composite, as well as on the resistance of the composite to degradation caused by alkali-silica reaction (ASR). After 28 and 56 days of curing, the highest improvement in the mechanical properties was observed in the batches of specimens with the MS, MK and their mixture. The physical and mechanical properties of specimens with partially replaced sand to TS also deteriorated the least (the lowest expansion 0.02 %) with the application of the MS and MK mixture after 56 days of exposure to alkaline attack. XRD and microstructural analyses have shown that the reduction in expansion is due to the higher content of hydration products, as well as to the denser contact zone between the aggregate and the cementitious matrix
Investigation of Hydration Features of the Special Concrete with Aggregates of Various Metal Particles
This study presents an analysis of various size metal particle waste (MP) influences on
Portland cement (PC) paste hydration course, concrete sample structure densification during
hardening and physical-mechanical properties. Investigations have shown that MP filler accelerates
maximum heat release rate in PC pastes. MP intensifies structure development in the early phase,
but slows it down in later PC hydration period. After 28-days of hardening the compressive strength
of the concrete samples without MP filler is about 20% higher than of samples with MP. When in
concrete composition microsilica and MP fillers are used together, compressive strength of concrete
sample composition is up to 50% higher than of samples with MP filler only