8 research outputs found

    Living Earth:Implementing national standardised land cover classification systems for Earth Observation in support of sustainable development

    Get PDF
    Earth Observation (EO) has been recognised as a key data source for supporting the United Nations Sustainable Development Goals (SDGs). Advances in data availability and analytical capabilities have provided a wide range of users access to global coverage analysis-ready data (ARD). However, ARD does not provide the information required by national agencies tasked with coordinating the implementation of SDGs. Reliable, standardised, scalable mapping of land cover and its change over time and space facilitates informed decision making, providing cohesive methods for target setting and reporting of SDGs. The aim of this study was to implement a global framework for classifying land cover. The Food and Agriculture Organisation’s Land Cover Classification System (FAO LCCS) provides a global land cover taxonomy suitable to comprehensively support SDG target setting and reporting. We present a fully implemented FAO LCCS optimised for EO data; Living Earth, an open-source software package that can be readily applied using existing national EO infrastructure and satellite data. We resolve several semantic challenges of LCCS for consistent EO implementation, including modifications to environmental descriptors, inter-dependency within the modular-hierarchical framework, and increased flexibility associated with limited data availability. To ensure easy adoption of Living Earth for SDG reporting, we identified key environmental descriptors to provide resource allocation recommendations for generating routinely retrieved input parameters. Living Earth provides an optimal platform for global adoption of EO4SDGs ensuring a transparent methodology that allows monitoring to be standardised for all countrie

    Characterization of a Highly Biodiverse Floodplain Meadow Using Hyperspectral Remote Sensing within a Plant Functional Trait Framework

    Get PDF
    We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions

    A globally relevant change taxonomy and evidence-based change framework for land monitoring

    Get PDF
    A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State-Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation 'impact (pressure)', with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into 'impact (pressure)' categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from ground-based, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes-including land degradation, desertification and ecosystem restoration-the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions

    A globally relevant change taxonomy and evidence-based change framework for land monitoring

    Get PDF
    A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-StateïżœImpact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation ‘impact (pressure)’, with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into ‘impact (pressure)’ categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from groundbased, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes—including land degradation, desertification and ecosystem restoration—the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions

    Assessing Suitability of Sentinel-2 Bands for Monitoring of Nutrient Concentration of Pastures with a Range of Species Compositions

    No full text
    The accurate and timely assessment of pasture quantity and quality (i.e., nutritive characteristics) is vital for effective pasture management. Remotely sensed data can be used to predict pasture quantity and quality. This study investigated the ability of Sentinel-2 multispectral bands, convolved from proximal hyperspectral data, in predicting various pasture quality and quantity parameters. Field data (quantitative and spectral) were gathered for experimental plots representing four pasture types—perennial ryegrass monoculture and three mixtures of swards representing increasing species diversity. Spectral reflectance data at the canopy level were used to generate Sentinel-2 bands and calculate normalised difference indices with each possible band pair. The suitability of these indices for prediction of pasture parameters was assessed. Pasture quantity parameters (biomass and Leaf Area Index) had a stronger influence on overall reflectance than the quality parameters. Indices involving the 1610 nm band were optimal for acid detergent fibre, crude protein, organic matter and water-soluble carbohydrate concentration, while being less affected by biomass or LAI. The study emphasises the importance of accounting for the quantity parameters in the spectral data-based models for pasture quality predictions. These explorative findings inform the development of future pasture quantity and quality models, particularly focusing on diverse swards
    corecore