1 research outputs found

    Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity

    Get PDF
    Background: T-cell tolerance of allergic cutaneous contact sensitivity (CS) induced in mice by high doses of reactive hapten is mediated by suppressor cells that release antigen-specific suppressive nanovesicles. Objective: We sought to determine the mechanism or mechanisms of immune suppression mediated by the nanovesicles. Methods: T-cell tolerance was induced by means of intravenous injection of hapten conjugated to self-antigens of syngeneic erythrocytes and subsequent contact immunization with the same hapten. Lymph node and spleen cells from tolerized or control donors were harvested and cultured to produce a supernatant containing suppressive nanovesicles that were isolated from the tolerized mice for testing in active and adoptive cell-transfer models of CS. Results: Tolerance was shown due to exosome-like nanovesicles in the supernatants of CD81 suppressor T cells that were not regulatory T cells. Antigen specificity of the suppressive nanovesicles was conferred by a surface coat of antibody light chains or possibly whole antibody, allowing targeted delivery of selected inhibitory microRNA (miRNA)–150 to CS effector T cells. Nanovesicles also inhibited CS in actively sensitized mice after systemic injection at the peak of the responses. The role of antibody and miRNA-150 was established by tolerizing either panimmunoglobulin-deficient JH2/2 or miRNA-1502/2 mice that produced nonsuppressive nanovesicles. These nanovesicles could be made suppressive by adding antigen-specific antibody light chains or miRNA-150, respectively. Conclusions: This is the first example of T-cell regulation through systemic transit of exosome-like nanovesicles delivering a chosen inhibitory miRNA to target effector T cells in an antigen-specific manner by a surface coating of antibody light chains
    corecore