29 research outputs found

    Ferroelectric Polymer for Bio-Sonar Replica

    Get PDF

    Design of PEIS: A Low-Cost Pipe Inspector Robot

    Get PDF
    This paper outlines the design of a novel mechatronic system for semi-automatic in-spection and white-water in-pipe obstruction removals without the need for destructive methods or specialized manpower. The device is characterized by a lightweight structure and high trans-portability. It is composed by a front, a rear and a central module that realize the worm-like lo-comotion of the robot with a specifically designed driving mechanism for the straight motion of the robot along the pipeline. The proposed mechatronic system is easily adaptable to pipes of various sizes. Each module is equipped with a motor that actuates three slider-crank-based mechanisms. The central module incorporates a length-varying mechanism that allows forward and backward locomotion. The device is equipped with specific low-cost sensors that allow an operator to monitor the device and locate an obstruction in real time. The movement of the device can be automatic or controlled manually by using a specific user-friendly control board and a laptop. Preliminary laboratory tests are reported to demonstrate the engineering feasibility and effectiveness of the proposed design, which is currently under patenting

    Development of a Small Cryogen-Free MgB2 Test Coil for SMES Application

    No full text
    MgB2 material operating at moderate field can conveniently be considered for short-term cost-effective implementation of superconducting magnetic energy storage (SMES). Due to the intrinsic performance of this material, moderate field operation and cryogen free cooling in the range 10-20 K need to be considered. For investigating the feasibility of MgB2 based SMES technology a 10 kW - 2 s system is under development. A small MgB2 coil was developed and tested as the first step of this study. The cooling was obtained by means of a cryogen-free test facility based on a two-stages Gifford-McMahon regenerative heat exchanger. A power conditioning system (PCS) was also developed in order to connect the coil with the power grid. The PCS is based on power mosfet components and consists of two parallel dc/dc boost converters and an inverter connected to a common dc bus at 100 V. Continuous operation of the coil at a charge/discharge rate up to 24 kW can be achieved by means of the PCS. Details of the layout of the coil and the thermal connection with the cryocooler are discussed in this paper. Results of cooling test are reported. Possible SMES operation is also discussed

    Development of an innovative superconducting magnetic energy storage system

    No full text
    The present work is focused on the demonstration of an innovative approach to a superconducting magnetic energy storage system by means of next generation superconducting wires. The device is thought to be integrated in a more complex biomass plant for green energy production which includes an anaerobic digester and a cogenerator for biogas and electrical energy production. Presented technology allows the storage of the green energy produced with a very high efficiency and with a better power quality respect to traditional counterparts

    Anti-Reflective Zeolite Coating for Implantable Bioelectronic Devices

    No full text
    Since sunlight is one of the most easily available and clean energy supplies, solar cell development and the improvement of its conversion efficiency represent a highly interesting topic. Superficial light reflection is one of the limiting factors of the photovoltaic cells (PV) efficiency. To this end, interfacial layer with anti-reflective properties reduces this phenomenon, improving the energy potentially available for transduction. Nanoporous materials, because of the correlation between the refractive index and the porosity, allow low reflection, improving light transmission through the coating. In this work, anti-reflective coatings (ARCs) deposited on commercial PV cells, which were fabricated using two different Linde Type A (LTA) zeolites (type 3A and 4A), have been investigated. The proposed technique allows an easier deposition of a zeolite-based mixture, avoiding the use of chemicals and elevated temperature calcination processes. Results using radiation in the range 470–610 nm evidenced substantial enhancement of the fill factor, with maximum achieved values of over 40%. At 590 and 610 nm, which are the most interesting bands for implantable devices, FF is improved, with a maximum of 22% and 10%, respectively. ARCs differences are mostly related to the morphology of the zeolite powder used, which resulted in thicker and rougher coatings using zeolite 3A. The proposed approach allows a simple and reliable deposition technique, which can be of interest for implantable medical devices

    Design of PEIS: A Low-Cost Pipe Inspector Robot

    No full text
    This paper outlines the design of a novel mechatronic system for semi-automatic inspection and white-water in-pipe obstruction removals without the need for destructive methods or specialized manpower. The device is characterized by a lightweight structure and high transportability. It is composed by a front, a rear and a central module that realize the worm-like locomotion of the robot with a specifically designed driving mechanism for the straight motion of the robot along the pipeline. The proposed mechatronic system is easily adaptable to pipes of various sizes. Each module is equipped with a motor that actuates three slider-crank-based mechanisms. The central module incorporates a length-varying mechanism that allows forward and backward locomotion. The device is equipped with specific low-cost sensors that allow an operator to monitor the device and locate an obstruction in real time. The movement of the device can be automatic or controlled manually by using a specific user-friendly control board and a laptop. Preliminary laboratory tests are reported to demonstrate the engineering feasibility and effectiveness of the proposed design, which is currently under patenting

    Development of Non-Invasive Ventilator for Homecare and Patient Monitoring System

    No full text
    Recently, the incidence of, and interest in, respiratory diseases has been amplified by severe acute respiratory syndrome coronavirus (SARS-CoV-2) and other respiratory diseases with a high prevalence. Most of these diseases require mechanical ventilation for homecare and clinical therapy. Herein, we propose a portable and non-invasive mechanical fan (NIV) for home and clinical applications. The NIV’s core is a turbine for airflow generation, which can provide and monitor a positive two-level pressure of up to approximately 500 lpm at 50 cmH2O according to the inspiration/expiration phase. After calibration, the proposed NIV can precisely set the airflow with a pressure between 4 cmH2O and 20 cmH2O, providing a versatile device that can be used for continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BiPAP). The airflow is generated by a turbine monitored using a mass flow sensor. The whole NIV is monitored with a 16 MHz clock microcontroller. An analog-to-digital converter is used as the input for analog signals, while a digital-to-analog converter is used to drive the turbine. I2C protocol signals are used to manage the display. Moreover, a Wi-Fi system is interfaced for the transmission/reception of clinical and technical information via a smartphone, achieving a remote-controlled NIV

    FT-IR saliva analysis for the diagnosis of psoriasis. a pilot study

    No full text
    Psoriasis is a chronic, autoimmune disease with multiple interplaying risk factors. Saliva has gained growing interest as an excellent biological fluid exhibiting a strong diagnostic potential in dermopathies. Saliva profiling through Fourier Transform Infrared Spectroscopy in attenuated Total Reflection (FT-IR ATR) was investigated for the diagnosis of psoriasis. Particularly, multivariate analysis was carried out after a suitable pre-processing, applying unsupervised principal component analysis (PCA) for feature extraction in the Amide I/II, Thiocyanate and within Thiocyanate and bio fingerprint bands. Further, linear discriminant analysis (LDA) and support vector machine (SVM) were trained to establish discrimination models between psoriatic subjects and healthy controls. PCA-LDA evidenced a classification performance in the bio fingerprint region (2150–900 cm− 1 ) of 93.75% accuracy, and a sensitivity and specificity of 87.5% if compared to SVM (87.5% accuracy, with a sensitivity and specificity of 75%). Saliva profiling and multivariate analysis provide a powerful approach in diagnosis and follow-up of inflammatory dermatopathies. FT-IR saliva profiling, signal processing and machine learning algorithms evidenced the possibility of automatic classification of psoriatic patients, with a potentially interesting insight in mass screening and preliminary diagnosi

    A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals

    No full text
    Low frequency ultrasounds in air are widely used for real-time applications in short-range communication systems and environmental monitoring, in both structured and unstructured environments. One of the parameters widely evaluated in pulse-echo ultrasonic measurements is the time of flight (TOF), which can be evaluated with an increased accuracy and complexity by using different techniques. Hereafter, a nonstandard cross-correlation method is investigated for TOF estimations. The procedure, based on the use of template signals, was implemented to improve the accuracy of recursive TOF evaluations. Tests have been carried out through a couple of 60 kHz custom-designed polyvinylidene fluoride (PVDF) hemicylindrical ultrasonic transducers. The experimental results were then compared with the standard threshold and cross-correlation techniques for method validation and characterization. An average improvement of 30% and 19%, in terms of standard error (SE), was observed. Moreover, the experimental results evidenced an enhancement in repeatability of about 10% in the use of a recursive positioning system
    corecore