102 research outputs found

    Economic Value of Climate Change Adaptation Strategies for Water Management in Spain s Jucar Basin

    Full text link
    [EN] Although many recent studies have quantified the potential effects of climate change on water resource systems, the scientific community faces now the challenge of developing methods for assessing and selecting climate change adaptation options. This paper presents a method for assessing impacts and adaptation strategies to global change in a river basin system at different temporal horizons using a hydro-economic model. First, a multiobjective analysis selects climate change projections based on the fitting of the climate models to the historical conditions for the historical period. Inflows for climate change scenarios are generated using calibrated rainfall-runoff models, perturbing observed meteorological time series according to the projected anomalies in mean and standard deviation. Demands are projected for the different scenarios and characterized using economic demand curves. With the new water resource and demand scenarios, the impact of global change on system performance is assessed using a hydro-economic model with reliability and economic indices. A new economic loss index is defined to assess the economic equity of the system. Selected adaptation strategies are simulated to compare performance with the business-as-usual scenario. The approach is applied to the Jucar River water resource system, in eastern Spain, using climate projections from the European Union (EU) ENSEMBLES project. Results show that the system is vulnerable to global change, especially over the long term, and that adaptation actions can save Euro3-65million/year. (C) 2017 American Society of Civil Engineers.This research was partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R and CGL2013-48424-C2-2-R) of the National Research Plan (Plan Estatal I+D+I 2013-2016), funded by the Spanish Ministry MINECO (Ministerio de Economia y Competitividad) and European Federation funds. It was also partially funded by the PMAFI06/14 project (UCAM). The work was also partially supported by a stay grant from the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering-TEE Project. The authors would like to thank Professor Jay R. Lund (University of California, Davis) for his insights. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract Number 505539) whose support is gratefully acknowledged. The data can be downloaded from http://ensembles-eu.metoffice.com/.Escrivà Bou, À.; Pulido-Velazquez, M.; Pulido-Velázquez, D. (2017). Economic Value of Climate Change Adaptation Strategies for Water Management in Spain s Jucar Basin. Journal of Water Resources Planning and Management. 143(5):1-13. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000735S113143

    Inferring efficient operating rules in multireservoir water resource systems: A review

    Full text link
    [EN] Coordinated and efficient operation of water resource systems becomes essential to deal with growing demands and uncertain resources in water-stressed regions. System analysis models and tools help address the complexities of multireservoir systems when defining operating rules. This paper reviews the state of the art in developing operating rules for multireservoir water resource systems, focusing on efficient system operation. This review focuses on how optimal operating rules can be derived and represented. Advantages and drawbacks of each approach are discussed. Major approaches to derive optimal operating rules include direct optimization of reservoir operation, embedding conditional operating rules in simulation-optimization frameworks, and inferring rules from optimization results. Suggestions on which approach to use depend on context. Parametrization-simulation-optimization or rule inference using heuristics are promising approaches. Increased forecasting capabilities will further benefit the use of model predictive control algorithms to improve system operation. This article is categorized under: Engineering Water > Water, Health, and Sanitation Engineering Water > MethodsThe study has been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion Universidades (MICINN) of Spain, and by the postdoctoral program (PAID-10-18) of the Universitat Politecnica de Valencia (UPV).Macian-Sorribes, H.; Pulido-Velazquez, M. (2019). Inferring efficient operating rules in multireservoir water resource systems: A review. Wiley Interdisciplinary Reviews Water. 7(1):1-24. https://doi.org/10.1002/wat2.1400S12471Aboutalebi, M., Bozorg Haddad, O., & Loáiciga, H. A. (2015). Optimal Monthly Reservoir Operation Rules for Hydropower Generation Derived with SVR-NSGAII. Journal of Water Resources Planning and Management, 141(11), 04015029. doi:10.1061/(asce)wr.1943-5452.0000553Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir Optimization in Water Resources: a Review. Water Resources Management, 28(11), 3391-3405. doi:10.1007/s11269-014-0700-5Ahmadi, M., Bozorg Haddad, O., & Mariño, M. A. (2013). Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules. Water Resources Management, 28(1), 131-147. doi:10.1007/s11269-013-0476-zAndreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAndreu, J., & Sahuquillo, A. (1987). Efficient Aquifer Simulation in Complex Systems. Journal of Water Resources Planning and Management, 113(1), 110-129. doi:10.1061/(asce)0733-9496(1987)113:1(110)Ashbolt, S. C., Maheepala, S., & Perera, B. J. C. (2016). Using Multiobjective Optimization to Find Optimal Operating Rules for Short-Term Planning of Water Grids. Journal of Water Resources Planning and Management, 142(10), 04016033. doi:10.1061/(asce)wr.1943-5452.0000675Ashbolt, S. C., & Perera, B. J. C. (2018). Multiobjective Optimization of Seasonal Operating Rules for Water Grids Using Streamflow Forecast Information. Journal of Water Resources Planning and Management, 144(4), 05018003. doi:10.1061/(asce)wr.1943-5452.0000902Azari, A., Hamzeh, S., & Naderi, S. (2018). Multi-Objective Optimization of the Reservoir System Operation by Using the Hedging Policy. Water Resources Management, 32(6), 2061-2078. doi:10.1007/s11269-018-1917-5Becker, L., & Yeh, W. W.-G. (1974). Optimization of real time operation of a multiple-reservoir system. Water Resources Research, 10(6), 1107-1112. doi:10.1029/wr010i006p01107Bellman, R. E., & Dreyfus, S. E. (1962). Applied Dynamic Programming. doi:10.1515/9781400874651Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. doi:10.1515/9781400831050Bessler, F. T., Savic, D. A., & Walters, G. A. (2003). Water Reservoir Control with Data Mining. Journal of Water Resources Planning and Management, 129(1), 26-34. doi:10.1061/(asce)0733-9496(2003)129:1(26)Bhaskar, N. R., & Whitlatch, E. E. (1980). Derivation of monthly reservoir release policies. Water Resources Research, 16(6), 987-993. doi:10.1029/wr016i006p00987Bianucci, P., Sordo-Ward, Á., Moralo, J., & Garrote, L. (2015). Probabilistic-Multiobjective Comparison of User-Defined Operating Rules. Case Study: Hydropower Dam in Spain. Water, 7(12), 956-974. doi:10.3390/w7030956Biglarbeigi, P., Giuliani, M., & Castelletti, A. (2018). Partitioning the Impacts of Streamflow and Evaporation Uncertainty on the Operations of Multipurpose Reservoirs in Arid Regions. Journal of Water Resources Planning and Management, 144(7), 05018008. doi:10.1061/(asce)wr.1943-5452.0000945Bolouri-Yazdeli, Y., Bozorg Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014). Evaluation of Real-Time Operation Rules in Reservoir Systems Operation. Water Resources Management, 28(3), 715-729. doi:10.1007/s11269-013-0510-1Borgomeo, E., Mortazavi-Naeini, M., Hall, J. W., O’Sullivan, M. J., & Watson, T. (2016). Trading-off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 52(2), 622-643. doi:10.1002/2015wr018164Bozorg-Haddad, O., Azarnivand, A., Hosseini-Moghari, S.-M., & Loáiciga, H. A. (2017). WASPAS Application and Evolutionary Algorithm Benchmarking in Optimal Reservoir Optimization Problems. Journal of Water Resources Planning and Management, 143(1), 04016070. doi:10.1061/(asce)wr.1943-5452.0000716Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., & Loáiciga, H. A. (2015). Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir Systems. Journal of Water Resources Planning and Management, 141(8), 04014097. doi:10.1061/(asce)wr.1943-5452.0000498Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9). doi:10.1029/2011wr011212Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., … Brekke, L. (2015). The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resources Research, 51(8), 6110-6124. doi:10.1002/2015wr017114Cai, X., McKinney, D. C., & Lasdon, L. S. (2001). Piece-by-Piece Approach to Solving Large Nonlinear Water Resources Management Models. Journal of Water Resources Planning and Management, 127(6), 363-368. doi:10.1061/(asce)0733-9496(2001)127:6(363)Cai, X., Vogel, R., & Ranjithan, R. (2013). Special Issue on the Role of Systems Analysis in Watershed Management. Journal of Water Resources Planning and Management, 139(5), 461-463. doi:10.1061/(asce)wr.1943-5452.0000341Cancelliere, A., Giuliano, G., Ancarani, A., & Rossi, G. (2002). Water Resources Management, 16(1), 71-88. doi:10.1023/a:1015563820136Caseri, A., Javelle, P., Ramos, M. H., & Leblois, E. (2015). Generating precipitation ensembles for flood alert and risk management. Journal of Flood Risk Management, 9(4), 402-415. doi:10.1111/jfr3.12203Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2010). Tree-based reinforcement learning for optimal water reservoir operation. Water Resources Research, 46(9). doi:10.1029/2009wr008898Castelletti, A., Pianosi, F., & Restelli, M. (2013). A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resources Research, 49(6), 3476-3486. doi:10.1002/wrcr.20295Castelletti, A., Pianosi, F., & Soncini-Sessa, R. (2008). Water reservoir control under economic, social and environmental constraints. Automatica, 44(6), 1595-1607. doi:10.1016/j.automatica.2008.03.003Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian networks in water resource modelling and management. Environmental Modelling & Software, 22(8), 1073-1074. doi:10.1016/j.envsoft.2006.06.001Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian Networks and participatory modelling in water resource management. Environmental Modelling & Software, 22(8), 1075-1088. doi:10.1016/j.envsoft.2006.06.003Celeste, A. B., & Billib, M. (2009). Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 32(9), 1429-1443. doi:10.1016/j.advwatres.2009.06.008Celeste, A. B., Curi, W. F., & Curi, R. C. (2009). Implicit Stochastic Optimization for deriving reservoir operating rules in semiarid Brazil. Pesquisa Operacional, 29(1), 223-234. doi:10.1590/s0101-74382009000100011Chandramouli, V., & Raman, H. (2001). Multireservoir Modeling with Dynamic Programming and Neural Networks. Journal of Water Resources Planning and Management, 127(2), 89-98. doi:10.1061/(asce)0733-9496(2001)127:2(89)Chang, L.-C., & Chang, F.-J. (2001). Intelligent control for modelling of real-time reservoir operation. Hydrological Processes, 15(9), 1621-1634. doi:10.1002/hyp.226Chazarra, M., García-González, J., Pérez-Díaz, J. I., & Arteseros, M. (2016). Stochastic optimization model for the weekly scheduling of a hydropower system in day-ahead and secondary regulation reserve markets. Electric Power Systems Research, 130, 67-77. doi:10.1016/j.epsr.2015.08.014Chen, D., Leon, A. S., Fuentes, C., Gibson, N. L., & Qin, H. (2018). Incorporating Filters in Random Search Algorithms for the Hourly Operation of a Multireservoir System. Journal of Water Resources Planning and Management, 144(2), 04017088. doi:10.1061/(asce)wr.1943-5452.0000876Coerver, H. M., Rutten, M. M., & van de Giesen, N. C. (2018). Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 22(1), 831-851. doi:10.5194/hess-22-831-2018Côté, P., & Leconte, R. (2016). Comparison of Stochastic Optimization Algorithms for Hydropower Reservoir Operation with Ensemble Streamflow Prediction. Journal of Water Resources Planning and Management, 142(2), 04015046. doi:10.1061/(asce)wr.1943-5452.0000575Cui, L., & Kuczera, G. (2005). Optimizing water supply headworks operating rules under stochastic inputs: Assessment of genetic algorithm performance. Water Resources Research, 41(5). doi:10.1029/2004wr003517Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., … Castelletti, A. (2016). A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate. Water Resources Research, 52(9), 6751-6768. doi:10.1002/2015wr018253Cunha, M. C., & Antunes, A. (2012). Simulated annealing algorithms for water systems optimization. WIT Transactions on State of the Art in Science and Engineering, 57-73. doi:10.2495/978-1-84564-664-6/04Dariane, A. B., & Momtahen, S. (2009). Optimization of Multireservoir Systems Operation Using Modified Direct Search Genetic Algorithm. Journal of Water Resources Planning and Management, 135(3), 141-148. doi:10.1061/(asce)0733-9496(2009)135:3(141)Das, B., Singh, A., Panda, S. N., & Yasuda, H. (2015). Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy, 42, 527-537. doi:10.1016/j.landusepol.2014.09.012Davidsen, C., Liu, S., Mo, X., Rosbjerg, D., & Bauer-Gottwein, P. (2016). The cost of ending groundwater overdraft on the North China Plain. Hydrology and Earth System Sciences, 20(2), 771-785. doi:10.5194/hess-20-771-2016Ehteram, M., Karami, H., & Farzin, S. (2018). Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models. Water Resources Management, 32(7), 2539-2560. doi:10.1007/s11269-018-1945-1Eisel, L. M. (1972). Chance constrained reservoir model. Water Resources Research, 8(2), 339-347. doi:10.1029/wr008i002p00339European Commission(2007). Communication from the Commission to the European Parliament and the Council: Addressing the challenge of water scarcity and droughts in the European Union COM(2007) 414 final. Brussels Belgium.European Commission. (2012a). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: A Blueprint to Safeguard Europe's Water Resources COM(2012) 673 final. Brussels Belgium.European Commission. (2012b). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: Report on the Review of the European Water Scarcity and Droughts Policy COM(2012) 672 final. Brussels Belgium.Fallah-Mehdipour, E., Bozorg Haddad, O., & Mariño, M. A. (2012). Real-Time Operation of Reservoir System by Genetic Programming. Water Resources Management, 26(14), 4091-4103. doi:10.1007/s11269-012-0132-zFazlali, A., & Shourian, M. (2017). A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach. Water Resources Management, 32(1), 67-81. doi:10.1007/s11269-017-1791-6Ficchì, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571Fu, Q., Li, T., Cui, S., Liu, D., & Lu, X. (2017). Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty. Water Resources Management, 32(4), 1261-1274. doi:10.1007/s11269-017-1868-2Galelli, S., Goedbloed, A., Schwanenberg, D., & van Overloop, P.-J. (2014). Optimal Real-Time Operation of Multipurpose Urban Reservoirs: Case Study in Singapore. Journal of Water Resources Planning and Management, 140(4), 511-523. doi:10.1061/(asce)wr.1943-5452.0000342Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., & Reed, P. M. (2016). Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations. Journal of Water Resources Planning and Management, 142(2), 04015050. doi:10.1061/(asce)wr.1943-5452.0000570Giuliani, M., Herman, J. D., Castelletti, A., & Reed, P. (2014). Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management. Water Resources Research, 50(4), 3355-3377. doi:10.1002/2013wr014700Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363Giuliani, M., Quinn, J. D., Herman, J. D., Castelletti, A., & Reed, P. M. (2018). Scalable Multiobjective Control for Large-Scale Water Resources Systems Under Uncertainty. IEEE Transactions on Control Systems Technology, 26(4), 1492-1499. doi:10.1109/tcst.2017.2705162Grüne, L., & Semmler, W. (2004). Using dynamic programming with adaptive grid scheme for optimal control problems in economics. Journal of Economic Dynamics and Control, 28(12), 2427-2456. doi:10.1016/j.jedc.2003.11.002Guariso, G., Rinaldi, S., & Soncini-Sessa, R. (1986). The Management of Lake Como: A Multiobjective Analysis. Water Resources Research, 22(2), 109-120. doi:10.1029/wr022i002p00109Gundelach, J., & ReVelle, C. (1975). Linear decision rule in reservoir management and design: 5. A general algorithm. Water Resources Research, 11(2), 204-207. doi:10.1029/wr011i002p00204Guo, X., Hu, T., Zeng, X., & Li, X. (2013). Extension of Parametric Rule with the Hedging Rule for Managing Multireservoir System during Droughts. Journal of Water Resources Planning and Management, 139(2), 139-148. doi:10.1061/(asce)wr.1943-5452.0000241Haddad, O. B., Afshar, A., & Mariño, M. A. (2006). Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization. Water Resources Management, 20(5), 661-680. doi:10.1007/s11269-005-9001-3Hadka, D., Herman, J., Reed, P., & Keller, K. (2015). An open source framework for many-objective robust decision making. Environmental Modelling & Software, 74, 114-129. doi:10.1016/j.envsoft.2015.07.014Haguma, D., & Leconte, R. (2018). Long-Term Planning of Water Systems in the Context of Climate Non-Stationarity with Deterministic and Stochastic Optimization. Water Resources Management, 32(5), 1725-1739. doi:10.1007/s11269-017-1900-6Haguma, D., Leconte, R., & Côté, P. (2018). Evaluating Transition Probabilities for a Stochastic Dynamic Programming Model Used in Water System Optimization. Journal of Water Resources Planning and Management, 144(2), 04017090. doi:10.1061/(asce)wr.1943-5452.0000883Houck, M. H. (1979). A Chance Constrained Optimization Model for reservoir design and operation. Water Resources Research, 15(5), 1011-1016. doi:10.1029/wr015i005p01011Ji, C., Zhou, T., & Huang, H. (2014). Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression. Water Resources Management, 28(9), 2435-2451. doi:10.1007/s11269-014-0610-6Karamouz, M., & Houck, M. H. (1982). Annual and monthly reservoir operating rules generated by deterministic optimization. Water Resources Research, 18(5), 1337-1344. doi:10.1029/wr018i005p01337Karamouz, M., & Houck, M. H. (1987). COMPARISON OF STOCHASTIC AND DETERMINISTIC DYNAMIC PROGRAMMING FOR RESERVOIR OPERATING RULE GENERATION. Journal of the American Water Resources Association, 23(1), 1-9. doi:10.1111/j.1752-1688.1987.tb00778.xKaramouz, M., & Vasiliadis, H. V. (1992). Bayesian stochastic optimization of reservoir operation using uncertain forecasts. Water Resources Research, 28(5), 1221-1232. doi:10.1029/92wr00103Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55-71. doi:10.1016/j.envsoft.2012.12.007Kelman, J., Stedinger, J. R., Cooper, L. A., Hsu, E., & Yuan, S.-Q. (1990). Sampling stochastic dynamic programming applied to reservoir operation. Water Resources Research, 26(3), 447-454. doi:10.1029/wr026i003p00447Keshtkar, A. R., Salajegheh, A., Sadoddin, A., & Allan, M. G. (2013). Application of Bayesian networks for sustainability assessment in catchment modeling and management (Case study: The Hablehrood river catchment). Ecological Modelling, 268, 48-54. doi:10.1016/j.ecolmodel.2013.08.003Kim, T., Heo, J.-H., Bae, D.-H., & Kim, J.-H. (2008). Single-reservoir operating rules for a year using multiobjective genetic algorithm. Journal of Hydroinformatics, 10(2), 163-179. doi:10.2166/hydro.2008.019Koutsoyiannis, D., & Economou, A. (2003). Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. Water Resources Research, 39(6). doi:10.1029/2003wr002148Kumar, D. N., & Reddy, M. J. (2006). Ant Colony Optimization for Multi-Purpose Reservoir Operation. Water Resources Management, 20(6), 879-898. doi:10.1007/s11269-005-9012-0Nagesh Kumar, D., & Janga Reddy, M. (2007). Multipurpose Reservoir Operation Using Particle Swarm Optimization. Journal of Water Resources Planning and Management, 133(3), 192-201. doi:10.1061/(asce)0733-9496(2007)133:3(192)Kumar, K., & Kasthurirengan, S. (2018). Generalized Linear Two-Point Hedging Rule for Water Supply Reservoir Operation. Journal of Water Resources Planning and Management, 144(9), 04018051. doi:10.1061/(asce)wr.1943-5452.0000964Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environmental Modelling & Software, 86, 168-183. doi:10.1016/j.envsoft.2016.09.017Labadie, J. W. (2004). Optimal Operation of Multireservoir Systems: State-of-the-Art Review. Journal of Water Resources Planning and Management, 130(2), 93-111. doi:10.1061/(asce)0733-9496(2004)130:2(93)Labadie J. W. Baldo M. &Larson R.(2000).MODSIM: Decision support system for river basin management. Documentation and user manual.Lee, J.-H., & Labadie, J. W. (2007). Stochastic optimization of multireservoir systems via reinforcement learning. Water Resources Research, 43(11). doi:10.1029/2006wr005627Lei, X., Tan, Q., Wang, X., Wang, H., Wen, X., Wang, C., & Zhang, J. (2018). Stochastic optimal operation of reservoirs based on copula functions. Journal of Hydrology, 557, 265-275. doi:10.1016/j.jhydrol.2017.12.038Lerma, N., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2013). Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization. Hydrological Sciences Journal, 58(4), 797-812. doi:10.1080/02626667.2013.779777Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A., & Sechi, G. M. (2015). Assessment of evolutionary algorithms for optimal operating rules design in real Water Resource Systems. Environmental Modelling & Software, 69, 425-436. doi:10.1016/j.envsoft.2014.09.024Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled human–natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017Lin, N. M., & Rutten, M. (2016). Optimal Operation of a Network of Multi-purpose Reservoir: A Review. Procedia Engineering, 154, 1376-1384. doi:10.1016/j.proeng.2016.07.504Liu, P., Cai, X., & Guo, S. (2011). Deriving multiple near-optimal solutions to deterministic reservoir operation problems. Water Resources Research, 47(8). doi:10.1029/2011wr010998Loucks, D. P. (1970). Some Comments on Linear Decision Rules and Chance Constraints. Water Resources Research, 6(2), 668-671. doi:10.1029/wr006i002p00668Loucks

    Integrating Historical Operating Decisions and Expert Criteria into a DSS for the Management of a multireservoir System

    Full text link
    [EN] This paper presents a collaborative framework to couple historical records with expert knowledge and criteria in order to define a Decision Support System (DSS) to support the seasonal operation of the reservoirs of the Jucar river system. The framework relies on the co-development of a DSS tool that is able to explicitly reproduce the decision-making processes and criteria considered by the system operators. Fuzzy logic is used to derive the implicit operating rules followed by the managers based on historical decisions and expert knowledge obtained in the co-development process, combining both sources of information. Fuzzy regression is used to forecast future inflows based on the meteorological and hydrological variables considered by the system operators in their decisions on reservoir operation. The DSS was validated against historical records. The developed framework and tools offer the system operators a way to predefine a set of feasible ex ante management decisions, as well as to explore the consequences associated with any single choice. In contrast with other approaches, the fuzzy-based method used is able to embed inflow uncertainty and its effects in the definition of the decisions on the system operation. Furthermore, the method is flexible enough to be applied to other water resource systems.The authors wish to acknowledge the Jucar River Basin Management Authority (Confederacion Hidrografica del Joecar, CHJ), especially its Operation Office's (Oficina de Explotacion) system operators Jose Maria Benlliure Moreno and Juan Fullana Montoro, for their contribution to the whole process, valuable suggestions, and provision of the necessary data to carry out the study. The study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economia y Competitividad) and FEDER funds. It has also received funding from the European Union's Horizon 2020 research and innovation programme under the IMPREX project (GA 641.811).Macian-Sorribes, H.; Pulido-Velazquez, M. (2017). Integrating Historical Operating Decisions and Expert Criteria into a DSS for the Management of a multireservoir System. Journal of Water Resources Planning and Management. 143(1). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000712S143

    Economic Costs of Sustaining Water Supplies: Findings from the Rio Grande

    Full text link
    [EN] Water claims in many of the world's arid basins exceed reliable supplies. Water demands for irrigation, urban use, the environment, and energy continue to grow, while supplies remain constrained by unsustainable use, drought and impacts of climate change. For example, policymakers in North America's Upper Rio Grande Basin face the challenge of designing plans for allocating the basin's water supplies efficiently and fairly to support current uses and current environments. Managers also seek resilient institutions that can ensure adequate supplies for future generations. This paper addresses those challenges by designing and applying an integrated basin-scale framework that accounts for the basin's most important hydrologic, economic, and institutional constraints. Its unique contribution is a quantitative analysis of three policies for addressing long term goals for the basin's reservoirs and aquifers: (1) no sustainability for water stocks, (2) sustaining water stocks, and (3) renewing water stocks. It identifies water use and allocation trajectories over time that result from each of these three plans. Findings show that it is hydrologically and institutionally feasible to manage the basin's water supplies sustainably. The economic cost of protecting the sustainability of the basin's water stocks can be achieved at 6-11 percent of the basin's average annual total economic value of water over a 20 year time horizon.The authors are grateful for financial support for this work by the New Mexico Agricultural Experiment Station and by the European Community 7th Framework Project GENESIS (226536) on Groundwater SystemsWard, FA.; Pulido-Velazquez, M. (2012). Economic Costs of Sustaining Water Supplies: Findings from the Rio Grande. Water Resources Management. 26(10):2883-2909. https://doi.org/10.1007/s11269-012-0055-8288329092610Booker JF (1995) Hydrologic and economic impacts of drought under alternative policy responses. Water Resour Bull 31:889–906Booker JF, Young RA (1994) Modeling intrastate and interstate markets for colorado river water resources. J Environ Econ Manag 26:66–87Booker JF, Michelsen AM, Ward FA (2005) Economic impact of alternative policy responses to prolonged and severe drought in the Rio Grande Basin. Water Resour Res 41:W02026Brown T (1990) Marginal economic value of streamflow: a case study for the Colorado River Basin. Water Resour Res 26:2845–2859Brown GM (2000) Renewable natural resource management and use without markets. J Econ Lit 38:875–914Burke SM, Adams RM, Wallender WW (2004) Water banks and environmental water, and demands: case of the Klamath Project. Water Resour Res 40:2004Cai X, Rosegrant MW (2004) Irrigation technology choices under hydrologic uncertainty: a case study from Maipo River Basin, Chile. Water Resour Res 40:W04103. doi: 04110.01029/02003WR002810Cai X, Ringler C, Rosegrant M (2006) Modeling water resources management at the basin level: Methodology and application to the maipo river basin research report. 149 International Food Policy Research Institute, Washington DCCharacklis GW, Griffin RC, Bedient PB (1999) Improving the ability of a water market to efficiently manage drought. Water Resour Res 35:823–831City of Albuquerque Water Utilities (2011) On the web at: http://www.cabq.gov/water/Draper AJ, Jenkins MW, Kirby KW, Lund JR, Howitt RE (2003) Economic engineering optimization for California water management. J Water Res PL-Manag 129:155–164Elephant Butte Irrigation District (2011) On the web at: http://www.ebid-nm.orgEl-Naqa A, Al-Shayeb A (2009) Groundwater protection and management strategy in Jordan. Water Resour Manag 23:2379–2394El Paso County Water Improvement District #1 (2011) On the web at: www.epcwid1.orgEl Paso Water Utilities (2011) On the web at: http://www.epwu.orgFlugel WA (2007) The adaptive integrated data information system (AIDIS) for global water research. Water Resour Manag 21:199–210Gohar A, Ward FA (2010) Gains from expanded irrigation water trading in Egypt: an integrated basin approach. Ecol Econ 69:2535–2548Gürlük S, Ward FA (2009) Integrated basin management: water and food policy options for Turkey. Ecol Econ 68:2666–2678Hawkes JM, Libbin JD (2011) Cost and Return Estimates. November 12 at http://aces.nmsu.edu/cropcosts/Jenkins MW, Lund JR, Howitt RE, Draper AJ, Msangi SM, Tanaka SK, Ritzema RS, Marques GF (2004) Optimization of California’s Water System: results and insights. J Water Resour Pl-Manag 130:271–280Knapp KC, Weinberg M, Howitt RE, Posnikoff JF (2003) Water transfers, agriculture and groundwater management: A dynamic economic analysis. J Environ Manag 67:291–301Koundouri P (2004) Current issues in the economics of groundwater resource management. J Econ Surv 18:703–740Letcher RA, Jakeman AJ, Croke BFW (2004) Model development for intgegrated assessment of water allocation options. Water Resour Res 40:W05502. doi: 05510.01029/02003WR002933Livingston ML, Garrido A (2004) Entering the policy debate: an economic valuation of groundwater policy in flux. Water Resour Res 40:W12S02Lund J, Guzman J (1999) Some derived operating rules for reservoirs in series or in parallel. J Water Resour Pl-Manag 125:143–153McCarl BA, Dillon CR, Keplinger KO, Williams RL (1999) Limiting pumping from the edwards aquifer: an economic investigation of proposals, water markets, and spring flow guarantees. Water Resour Res 35:1257–1268Michelsen A, McGuckin T, Stumpf D (1999) Nonprice water conservation programs as a demand management tool. J Am Water Resour Assoc 35:593–602Middle Rio Grande Conservancy District (2011) On the web at: http://www.mrgcd.comMolina JL, Arostegui JLG, Benavente J, Varela C, de la Hera A, Geta JAL (2009) Aquifers overexploitation in SE Spain: a proposal for the integrated analysis of water management. Water Resour Manag 23:2737–2760Murad AA, Al Nuaimi H, Al Hammadi M (2007) Comprehensive assessment of water resources in the united arab emirates (UAE). Water Resour Manag 21:1449–1463National Research Council (1997) Valuing ground water: economic concepts and approaches. National Academic Press, WashingtonNewlin BD, Jenkins MW, Lund JR, Howitt RE (2002) Southern California water markets: potential and limitations. J Water Resour Pl-Manag 128:21–32New Mexico Water Resources Research Institute (2006) Rio Grande Compact TextPascual P (2007) Avoiding tragedies of the intellectual commons through Integrated Impact Assessments. Water Resour Manag 21:2005–2013Prodanovic P, Simonovic SP (2011) An operational model for support of integrated watershed management. Water Resour Manag 24:1161–1194Pulido-Velazquez M, Jenkins MW, Lund JR (2004) Economic values for conjunctive use and water banking in Southern California. Water Resour Res 40(3):W03401Pulido-Velazquez M, Andreu J, Sahuquillo A (2006) Economic optimization of conjunctive use of surface water and groundwater at the basin scale. J Water Resour Pl-Manag 132(6):454–467Ringler CJ, von Braun J, Rosegrant MW (2004) Water policy analysis for the Mekong River Basin. Water Int 29:30–42Rio Grande Water Conservation District (2011) On the web at: http://www.rgwcd.orgSchulze RE (2007) Some foci of integrated water resources management in the “south” which are oft-forgotten by the “north”: a perspective from southern Africa. Water Resour Manag 21:269–294Speed R (2009) Transferring and trading water rights in the People's Republic of China. Int J Water Resour Dev 25:(2)269–281Tanaka SK, Zhu T, Lund JR, Howitt RE, Jenkins MW, Pulido-Velazquez M, Tauber M, Ritzema RS, Ferreira IC (2006) Climate warming and water management adaptation for California. Climatic Change 76:361–384Tietenberg T, Lewis L (2009) Environmental and natural resource economics, 8th edn. Prentice-HallTorell G, Ward FA (2010) Improved water institutions for food security and rural livelihoods in Afghanistan’s Balkh River Basin. Int J Water Resour Dev 26:613–637van der Keur P, Henriksen HJ, Refsgaard JC, Brugnach M, Pahl-Wostl C, Dewulf A, Buiteveld H (2008) Identification of major sources of uncertainty in current IWRM practice. Illustrated for the Rhine basin. Water Resour Manag 22:1677–1708Ward FA, Lynch TP (1997) Is dominant use management compatible with basin-wide economic efficiency? Water Resour Res 33:1165–1170Ward FA, Pulido-Velazquez M (2008) Efficiency, equity and sustainability in a water quantity-quality optimization model in the Rio Grande basin. Ecol Econ 66:26–37Ward FA, Pulido-Velazquez M (2009) Incentive pricing and cost recovery at the basin scale. J Environ Manag 90(1):293–313Ward FA, Cole RA, Deitner RA, Green-Hammond KA (1997) Limiting environmental program contradictions: a demand systems application to fishery management. Am J Agr Econ 79:803–813Ward FA, Booker JF, Michelsen AM (2006) Integrated economic, hydrologic, and institutional analysis of policy responses to mitigate drought impacts in the Rio Grande Basin. J Water Resour Pl-Manag 132:488–502Watkins DW Jr., McKinney DC (1999) Screening water supply options for the edwards aquifer region in Central Texas. J Water Resour Pl-Manag 125:14–24Watkins DW, Moser DA (2006) Economic-based optimization of panama canal system operations. J Water Resour Pl-Manag 132:454–467Willis DB, Whittlesey NK (1998) Water management policies for streamflow augmentation in an irrigated River Basin. J Agr Resour Econ 23:170–190Young RA (2005) Determining the economic value of water: concepts and methods. Washington D.C, USA: Resources For the FutureZarghaami M (2006) Integrated water resources management in polrud irrigation system. Water Resour Manag 20:215–22

    Modeling residential water and related energy, carbon footprint and costs in California

    Full text link
    Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions. (C) 2015 Elsevier Ltd. All rights reserved.This paper has been developed as a result of a mobility stay funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering-TEE Project. The study has been partially supported by the Plan Nacional I+D+I 2008-2011 (Ministry of Science and Innovation, Spain), projects CGL2009-13238-C02-01 and CGL2009-13238-C02-02.Escrivà Bou, À.; Lund, J.; Pulido-Velazquez, M. (2015). Modeling residential water and related energy, carbon footprint and costs in California. Environmental Science and Policy. 50:270-281. https://doi.org/10.1016/j.envsci.2015.03.005S2702815

    Improving operating policies of large-scale surface-groundwater systems through stochastic programming

    Full text link
    [EN] The management of large-scale water resource systems with surface and groundwater resources requires considering stream-aquifer interactions. Optimization models applied of large-scale systems have either employed deterministic optimization (with perfect foreknowledge of future inflows, which hinders their applicability to real-life operations) or stochastic programming (in which stream-aquifer interaction is often neglected due to the computational burden associated with these methods). In this paper, stream-aquifer interaction is integrated in a stochastic programming framework by combining the Stochastic Dual Dynamic Programming (SDDP) optimization algorithm with the Embedded Multireservoir Model (EMM). The resulting extension of the SDDP algorithm, named Combined Surface-Groundwater SDDP (CSG-SDDP), is able to properly represent the stream-aquifer interaction within stochastic optimization models of large-scale surface-groundwater resources systems. The algorithm is applied to build a hydroeconomic model for the Jucar River Basin (Spain), in which stream-aquifer interactions are essential to the characterization of water resources in the system. Besides the uncertainties regarding the economic characterization of the demand functions, the results show that the economic efficiency of the operating policies under the current system can be improved by better management of groundwater and surface resourcesThe data used in this study was obtained from the references included. This study was partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economia y Competitividad) and FEDER funds. It also received funding from the European Union's Horizon 2020 research and innovation programme under the IMPREX project (grant agreement: 641.811). The authors want to thank the editor, the associated editor and the reviewers for their comments and suggestions in order to increase the quality of the paper. Readers interested in requesting data about the results of the study may send an e-mail to [email protected], H.; Tilmant, A.; Pulido-Velazquez, M. (2017). Improving operating policies of large-scale surface-groundwater systems through stochastic programming. Water Resources Research. 53(2):1407-1423. https://doi.org/10.1002/2016WR019573S1407142353

    A hydrologically-driven approach to climate change adaptation for multipurpose multireservoir system

    Full text link
    [EN] Climate change can significantly affect water systems with negative impacts on many facets of society and ecosystems. Therefore, significant attention must be devoted to the development of efficient adaptation strategies. More specifically, the reoperation of water resources systems to keep the overall performance within acceptable limits should be prioritized to avoid, or at least delay as much as possible, costly infrastructural investments. This manuscript presents a hydrologically-driven approach to support the reoperation of multipurpose multireservoir systems. The approach is organized around 1) the use of a large ensemble of GCM hydro-climate projections to drive a climate stress test; 2) the bottom-up clustering of those hydrologic projections based on hydrologic attributes that are both relevant to the region of interest and interpretable by the operators; and finally, 3) the identification of adaptation measures for each cluster after developing a one-way coupling of an optimization model with a simulation model. The climate impact assessment is illustrated with the multipurpose multireservoir system of the Lievre River basin in Quebec (Canada). Results show that cluster-specific, adapted, operating rules can improve the performance of the system and reveal its operational flexibility with respect to the different operating objectives.The work was partly supported by a project funded by MELCC (Quebecs Ministere de lEnvironnement et de la Lutte contre les changements climatiques) through two programs: PACC 2013-2020 and Fonds vert. This study does not represent the views of MELCC. Also, this work was partly supported by the NSERC Discovery Grant (Natural Sciences and Engineering Research Council of Canada) of the second author, and the intersectorial flood network of Quebec (RIISQ). This research was enabled in part by support provided by Compute Canada (www.computecanada.ca).Sant Anna, C.; Tilmant, A.; Pulido-Velazquez, M. (2022). A hydrologically-driven approach to climate change adaptation for multipurpose multireservoir system. Climate Risk Management. 36:1-16. https://doi.org/10.1016/j.crm.2022.1004271163

    Saving energy from urban water demand management

    Full text link
    This is the peer reviewed version of the following article: Escrivà Bou, Àlvar, Lund, JR., Pulido-Velazquez, M.. (2018). Saving energy from urban water demand management.Water Resources Research, 54, 7, 4265-4276. DOI: 10.1029/2017WR021448, which has been published in final form at http://doi.org/10.1029/2017WR021448. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Water use directly causes a significant amount of energy use in cities. In this paper we assessed energy and carbon dioxide emissions related to each part of the urban water cycle and the consequences of some water demand management policies in terms of water, energy, and CO2 emissions in urban water users, water and energy utilities, and the environment. First, we developed an hourly model of urban water uses by customer category, including water-related energy consumption. Next, using real data from the East Bay Municipal Utility District in California, we calibrated a model of the energy used in water supply, treatment, pumping, and wastewater treatment by the utility, obtaining also energy costs. Then, using data from the California Independent System Operator, we obtained hourly costs of energy generation and transport to the point of use for the energy utility. Finally, using average emission factors reported by energy utilities, we estimated greenhouse gas emissions for the entire urban water cycle. Results for East Bay Municipal Utility District show that water end uses account for almost 95% of all water-related energy use; however, the remaining 5% of energy used by the utility still costs over USD12 million annually. The carbon footprint of the urban water cycle is 372 kg CO2/person/year, representing approximately 4% of the total per capita emissions in California. Several simulations analyze the consequences of different water demand management policies, resulting in significant economic impacts for water and energy utilities and environmental benefits by reducing CO2 emissions.This paper has been developed as a result of a mobility stay funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering-TEE Project. This research was also partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R and CGL2013-48424-C2-2-R) of the National Research Plan (Plan Estatal I+D+I 2013-2016), funded by the Spanish Ministry MINECO (Ministerio de Economia y Competitividad) and European Federation funds. Water and energy microdata were kindly provided by Frank Loge and Edward Spang, at the Center for Water and Energy Efficiency of the University of California, Davis, who are able to release the data under private agreements and to whom we are very grateful. The results can be totally reproduced using the summary tables included in the supporting information.cEscrivà Bou, À.; Lund, J.; Pulido-Velazquez, M. (2018). Saving energy from urban water demand management. Water Resources Research. 54(7):4265-4276. https://doi.org/10.1029/2017WR021448S4265427654

    Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty

    Full text link
    [EN] In decision-making processes, reliability and risk aversion play a decisive role. This paper presents a framework for stochastic optimization of control strategies for groundwater nitrate pollution from agriculture under hydraulic conductivity uncertainty. The main goal is to analyze the influence of uncertainty in the physical parameters of a heterogeneous groundwater diffuse pollution problem on the results of management strategies, and to introduce methods that integrate uncertainty and reliability in order to obtain strategies of spatial allocation of fertilizer use in agriculture. A hydro-economic modeling approach is used for obtaining the allocation of fertilizer reduction that complies with the maximum permissible concentration in groundwater while minimizes agricultural income losses. The model is based upon nonlinear programming and groundwater flow and mass transport numerical simulation, condensed on a pollutant concentration response matrix. The effects of the hydraulic conductivity uncertainty on the allocation of nitrogen reduction among agriculture pollution sources are analyzed using four formulations: Monte Carlo simulation with pre-assumed parameter field, Monte Carlo optimization, stacking management, and mixed-integer stochastic model with predefined reliability. The formulations were tested in an illustrative example for 100 hydraulic conductivity realizations with different variance. The results show a high probability of not meeting the groundwater quality standards when deriving a policy from just a deterministic analysis. To increase the reliability several realizations can be optimized at the same time. By using a mixed-integer stochastic formulation, the desired reliability level of the strategy can be fixed in advance. The approach allows deriving the trade-offs between the reliability of meeting the standard and the net benefits from agricultural production. In a risk-averse decision making, not only the reliability of meeting the standards counts, but also the probability distribution of the maximum pollutant concentrations. A sensitivity analysis was carried out to assess the influence of the variance of the hydraulic conductivity fields on the strategies. The results show that the larger the variance, the greater the range of maximum nitrate concentrations and the worst case (or maximum value) that could be reached for the same level of reliability. © 2011 Elsevier Ltd.The study has been partially supported by the European Community 7th Framework Project GENESIS (226536) on groundwater systems and from the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (subprojects CGL2009-13238-C02-01 and CGL2009-13238-C02-02). The authors thank the anonymous reviewers for their suggestions for improving the paper.Peña Haro, S.; Pulido-Velazquez, M.; Llopis Albert, C. (2011). Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environmental Modelling and Software. 26(8):999-1008. https://doi.org/10.1016/j.envsoft.2011.02.010S999100826

    Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    Full text link
    [EN] The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.The study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) from the Spanish ministry MINECO (Ministerio de Economia y Competitividad) with European FEDER funds. The first author is supported by a grant from the University Lecturer Training Program (FPU12/03803) of the Ministry of Education, Culture and Sports of Spain. The second author is financially supported by BRGM's research program 30 (environmental and risk economics). Readers interested in the data can request those by e-mail to Corentin Girard, [email protected], CDP.; Rinaudo, J.; Pulido-Velazquez, M. (2016). Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory. Water Resources Research. 52(10):7945-7962. https://doi.org/10.1002/2016WR018757794579625210Benzie, M. (2014). Social Justice and Adaptation in the UK. Ecology and Society, 19(1). doi:10.5751/es-06252-190139Bruce, C., & Madani, K. (2015). Successful Collaborative Negotiation over Water Policy: Substance versus Process. Journal of Water Resources Planning and Management, 141(9), 04015009. doi:10.1061/(asce)wr.1943-5452.0000517Chazot , S. 2011 http://www.vallees-orb-libron.fr/wp-content/uploads/2012/12/etude-gestion-Monts-Orb-Rapport-V16.pdfChazot , S. T. Norotte J. David 2012 Rapport Final du Projet Explore 2070, BRLi-Irstea-Météo France [in French]Direction Générale des Collectivités Locales (DGCL) 2013 http://www.observatoire-des-territoires.gouv.fr/observatoire-des-territoires/es/potentiel-financier-par-habitantDinar, A., & Howitt, R. E. (1997). Mechanisms for Allocation of Environmental Control Cost: Empirical Tests of Acceptability and Stability. Journal of Environmental Management, 49(2), 183-203. doi:10.1006/jema.1995.0088Driessen, T. S. H., & Tijs, S. H. (1985). The Cost Gap Method and Other Cost Allocation Methods For Multipurpose Water Projects. Water Resources Research, 21(10), 1469-1475. doi:10.1029/wr021i010p01469European Commission (EC) 2009 Guidance Doc. 24Eek, D., & Biel, A. (2003). Social Justice Research, 16(3), 195-215. doi:10.1023/a:1025984611796Girard , C. 2015 10.4995/Thesis/10251/59461Girard, C., Rinaudo, J.-D., Pulido-Velazquez, M., & Caballero, Y. (2015). An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario. Environmental Modelling & Software, 69, 42-54. doi:10.1016/j.envsoft.2015.02.023Girard, C., Pulido-Velazquez, M., Rinaudo, J.-D., Pagé, C., & Caballero, Y. (2015). Integrating top–down and bottom–up approaches to design global change adaptation at the river basin scale. Global Environmental Change, 34, 132-146. doi:10.1016/j.gloenvcha.2015.07.002Girard, C., Rinaudo, J.-D., & Pulido-Velazquez, M. (2015). Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale. Water Resources Management, 29(11), 4129-4155. doi:10.1007/s11269-015-1049-0Graham, S., Barnett, J., Fincher, R., Mortreux, C., & Hurlimann, A. (2014). Towards fair local outcomes in adaptation to sea-level rise. Climatic Change, 130(3), 411-424. doi:10.1007/s10584-014-1171-7Hallegatte, S. (2009). Strategies to adapt to an uncertain climate change. Global Environmental Change, 19(2), 240-247. doi:10.1016/j.gloenvcha.2008.12.003Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4), 627-643. doi:10.1016/j.jhydrol.2009.06.037Heaney, J. P., & Dickinson, R. E. (1982). Methods for apportioning the cost of a water resource project. Water Resources Research, 18(3), 476-482. doi:10.1029/wr018i003p00476Hughes, S. (2013). Justice in Urban Climate Change Adaptation: Criteria and Application to Delhi. Ecology and Society, 18(4). doi:10.5751/es-05929-180448Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2014). Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Climatic Change, 132(3), 373-386. doi:10.1007/s10584-014-1210-4Lamont , J. C. Favor 2013 Stanford Encyclopedia of Philosophy E. N. Zalta 1 46,Lawrence, R. L., Daniels, S. E., & Stankey, G. H. (1997). Procedural justice and public involvement in natural resource decision making. Society & Natural Resources, 10(6), 577-589. doi:10.1080/08941929709381054Lejano, R. P., & Davos, C. A. (1995). Cost Allocation of Multiagency Water Resource Projects: Game Theoretic Approaches and Case Study. Water Resources Research, 31(5), 1387-1393. doi:10.1029/95wr00322Lempert, R. J., & Groves, D. G. (2010). Identifying and evaluating robust adaptive policy responses to climate change for water management agencies in the American west. Technological Forecasting and Social Change, 77(6), 960-974. doi:10.1016/j.techfore.2010.04.007Loehman, E., Orlando, J., Tschirhart, J., & Whinston, A. (1979). Cost allocation for a regional wastewater treatment system. Water Resources Research, 15(2), 193-202. doi:10.1029/wr015i002p00193Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381(3-4), 225-238. doi:10.1016/j.jhydrol.2009.11.045Madani, K., & Hooshyar, M. (2014). A game theory–reinforcement learning (GT–RL) method to develop optimal operation policies for multi-operator reservoir systems. Journal of Hydrology, 519, 732-742. doi:10.1016/j.jhydrol.2014.07.061Ministère de l'Energie et du Développement Durable (MEDDE) 2012Mill , J. 1861 Utilitarianism, Liberty, and Responsive Government, Equity and Justice in Social BehaviourMontet, C., & Serra, D. (2003). Game Theory and Economics. doi:10.1007/978-1-137-08289-3Moreau, C., Rinaudo, J.-D., & Garin, P. (2015). La justice sociale dans la construction du jugement d’acceptabilité. Analyse des réactions d’agriculteurs face à différentes règles de partage de l’eau souterraine. Économie rurale, (346), 31-48. doi:10.4000/economierurale.4612Neal, M. J., Lukasiewicz, A., & Syme, G. J. (2014). Why justice matters in water governance: some ideas for a ‘water justice framework’. Water Policy, 16(S2), 1-18. doi:10.2166/wp.2014.109Nielsen, K. (1979). Radical Egalitarian Justice. Social Theory and Practice, 5(2), 209-226. doi:10.5840/soctheorpract1979523Olmstead, S. M. (2014). Climate change adaptation and water resource management: A review of the literature. Energy Economics, 46, 500-509. doi:10.1016/j.eneco.2013.09.005Paavola, J. (2008). Science and social justice in the governance of adaptation to climate change. Environmental Politics, 17(4), 644-659. doi:10.1080/09644010802193609Paavola, J., & Adger, W. N. (2006). Fair adaptation to climate change. Ecological Economics, 56(4), 594-609. doi:10.1016/j.ecolecon.2005.03.015Parrachino , I. A. Dinar F. Patrone 2005 Policy Res. Working Pap. 4074Rinaudo, J.-D., Calatrava, J., & De Byans, M. V. (2015). Tradable water saving certificates to improve urban water use efficiency: an ex-ante evaluation in a French case study. Australian Journal of Agricultural and Resource Economics, 60(3), 422-441. doi:10.1111/1467-8489.12132Sadurski, W. (1985). Giving Desert Its Due. Law and Philosophy Library. doi:10.1007/978-94-015-7706-9Sechi, G. M., Zucca, R., & Zuddas, P. (2012). Water Costs Allocation in Complex Systems Using a Cooperative Game Theory Approach. Water Resources Management, 27(6), 1781-1796. doi:10.1007/s11269-012-0171-5Straffin, P. D., & Heaney, J. P. (1981). Game theory and the tennessee valley authority. International Journal of Game Theory, 10(1), 35-43. doi:10.1007/bf01770069Syme, G. J. (2011). Justice and Environmental Decision Making. Justice and Conflicts, 283-295. doi:10.1007/978-3-642-19035-3_17Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485-498. doi:10.1175/bams-d-11-00094.1Terray, L., & Boé, J. (2013). Quantifying 21st-century France climate change and related uncertainties. Comptes Rendus Geoscience, 345(3), 136-149. doi:10.1016/j.crte.2013.02.003Thomas, D. S. G., & Twyman, C. (2005). Equity and justice in climate change adaptation amongst natural-resource-dependent societies. Global Environmental Change, 15(2), 115-124. doi:10.1016/j.gloenvcha.2004.10.001Vernier , M. J. D. Rinaudo 2012 Rap. BRGM/RP-61317-FR http://infoterre.brgm.fr/rapports/RP-61317-FR.pdfWalker, W., Haasnoot, M., & Kwakkel, J. (2013). Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty. Sustainability, 5(3), 955-979. doi:10.3390/su5030955Ward, F. A., & Pulido-Velázquez, M. (2008). Efficiency, equity, and sustainability in a water quantity–quality optimization model in the Rio Grande basin. Ecological Economics, 66(1), 23-37. doi:10.1016/j.ecolecon.2007.08.018Ward, F. A., & Pulido-Velazquez, M. (2009). Incentive pricing and cost recovery at the basin scale. Journal of Environmental Management, 90(1), 293-313. doi:10.1016/j.jenvman.2007.09.009Young, H. P. (1994). Chapter 34 Cost allocation. Handbook of Game Theory with Economic Applications, 1193-1235. doi:10.1016/s1574-0005(05)80066-9Young, H. P., Okada, N., & Hashimoto, T. (1982). Cost allocation in water resources development. Water Resources Research, 18(3), 463-475. doi:10.1029/wr018i003p00463Zwarteveen, M. Z., & Boelens, R. (2014). Defining, researching and struggling for water justice: some conceptual building blocks for research and action. Water International, 39(2), 143-158. doi:10.1080/02508060.2014.89116
    corecore