9 research outputs found

    On the Interface Formation Model for Dynamic Triple Lines

    Full text link
    This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a continuum thermodynamical model for dynamic triple lines. We start with the derivation of the balances for mass, momentum, energy and entropy in a three-phase fluid system with full interfacial physics, including a brief review of the relevant transport theorems on interfaces and triple lines. Employing the entropy principle in the form given in [Bothe & Dreyer, Acta Mechanica, doi:10.1007/s00707-014-1275-1] but extended to this more general case, we arrive at the entropy production and perform a linear closure, except for a nonlinear closure for the sorption processes. Specialized to the isothermal case, we obtain a thermodynamically consistent mathematical model for dynamic triple lines and show that the total available energy is a strict Lyapunov function for this system

    Asymptotic Methods in the Theory of Ordinary Differential Equations

    No full text
    corecore