14 research outputs found

    Assessment of the SEEV Model to Predict Attention Allocation at Intersections During Simulated Driving

    Get PDF
    We attempted to model attention allocation of experienced drivers using the SEEV model. Unlike previous attempts, the present work looked at attention to entities (vehicles, signs, traffic control devices) in the outside world rather than considering the outside world as a unitary construct. Model parameters were generated from rankings of entities by experienced drivers. Experienced drivers drove a scenario that included a number of intersections interspersed with stretches of straight road. The intersections included non-hazard events. Eye movements were monitored during the driving session. The results of fitting the observed eye movement data to our SEEV model were poor, and were no better than fitting the data to a randomized SEEV model. A number of explanations for this are discussed

    Comparison of Novice and Experienced Drivers Using the SEEV Model to Predict Attention Allocation at Intersections During Simulated Driving

    Get PDF
    We compared the eye movements of novice drivers and experienced drivers while they drove a simulated driving scenario that included a number of intersections interspersed with stretches of straight road. The intersections included non-hazard events. Cassavaugh, Bos, McDonald, Gunaratne, & Backs (2013) attempted to model attention allocation of experienced drivers using the SEEV model. Here we compared two SEEV model fits between those experienced drivers and a sample of novice drivers. The first was a simplified model and the second was a more complex intersection model. The observed eye movement data was found to be a good fit to the simplified model for both experienced (R2 = 0.88) and novice drivers (R2 = 0.30). Like the previous results of the intersection model for the experienced drivers, the fit of the observed eye movement data to the intersection model for novice drivers was poor, and was no better than fitting the data to a randomized SEEV model. We concluded based on the simplified SEEV model, fixation count and fixation variance that experienced drivers were found to be more efficient at distributing their visual search compared to novice drivers

    Quantifying vehicle control from physiology in type 1 diabetes

    Get PDF
    Objective: Our goal is to measure real-world effects of at-risk driver physiology on safety-critical tasks like driving by monitoring driver behavior and physiology in real-time. Drivers with type 1 diabetes (T1D) have an elevated crash risk that is linked to abnormal blood glucose, particularly hypoglycemia. We tested the hypotheses that (1) T1D drivers would have overall impaired vehicle control behavior relative to control drivers without diabetes, (2) At-risk patterns of vehicle control in T1D drivers would be linked to at-risk, in-vehicle physiology, and (3) T1D drivers would show impaired vehicle control with more recent hypoglycemia prior to driving. Methods: Drivers (18 T1D, 14 control) were monitored continuously (4 weeks) using in-vehicle sensors (e.g., video, accelerometer, speed) and wearable continuous glucose monitors (CGMs) that measured each T1D driver’s real-time blood glucose. Driver vehicle control was measured by vehicle acceleration variability (AV) across lateral (AVY, steering) and longitudinal (AVX, braking/accelerating) axes in 45-second segments (N = 61,635). Average vehicle speed for each segment was modeled as a covariate of AV and mixed-effects linear regression models were used. Results: We analyzed 3,687 drives (21,231 miles). T1D drivers had significantly higher overall AVX, Y compared to control drivers (BX = 2.5 × 10−2 BY = 1.6 × 10−2, p \u3c 0.01)—which is linked to erratic steering or swerving and harsh braking/accelerating. At-risk vehicle control patterns were particularly associated with at-risk physiology, namely hypo- and hyperglycemia (higher overall AVX,Y). Impairments from hypoglycemia persisted for hours after hypoglycemia resolved, with drivers who had hypoglycemia within 2–3 h of driving showing higher AVX and AVY. State Department of Motor Vehicle records for the 3 years preceding the study showed that at-risk T1D drivers accounted for all crashes (N = 3) and 85% of citations (N = 13) observed. Conclusions: Our results show that T1D driver risk can be linked to real-time patterns of at-risk driver physiology, particularly hypoglycemia, and driver risk can be detected during and prior to driving. Such naturalistic studies monitoring driver vehicle controls can inform methods for early detection of hypoglycemia-related driving risks, fitness to drive assessments, thereby helping to preserve safety in at-risk drivers with diabetes

    Comparison of Novice and Experienced Drivers Using the SEEV Model to Predict Attention Allocation at Intersections During Simulated Driving

    Get PDF
    We compared the eye movements of novice drivers and experienced drivers while they drove a simulated driving scenario that included a number of intersections interspersed with stretches of straight road. The intersections included non-hazard events. Cassavaugh, Bos, McDonald, Gunaratne, & Backs (2013) attempted to model attention allocation of experienced drivers using the SEEV model. Here we compared two SEEV model fits between those experienced drivers and a sample of novice drivers. The first was a simplified model and the second was a more complex intersection model. The observed eye movement data was found to be a good fit to the simplified model for both experienced (R2 = 0.88) and novice drivers (R2 = 0.30). Like the previous results of the intersection model for the experienced drivers, the fit of the observed eye movement data to the intersection model for novice drivers was poor, and was no better than fitting the data to a randomized SEEV model. We concluded based on the simplified SEEV model, fixation count and fixation variance that experienced drivers were found to be more efficient at distributing their visual search compared to novice drivers

    Investigating Speed Deviation Patterns During Glucose Episodes: A Quantile Regression Approach

    No full text
    Given the growing prevalence of diabetes, there has been significant interest in determining how diabetes affects instrumental daily functions like driving. Complication of glucose control in diabetes includes hypoglycemic and hyperglycemic episodes, which may impair cognitive and psychomotor functions needed for safe driving. The goal of this paper was to determine patterns of diabetes speed behavior during acute glucose to drivers with diabetes who were euglycemic or control drivers without diabetes in a naturalistic driving environment. By employing distribution-based analytic methods that capture distribution patterns, our study advances prior literature that has focused on conventional approach of average speed to explore speed deviation patterns.This is a preprint of an article published as Joshi, Aparna, Jennifer Merickel, Cyrus V. Desouza, Matthew Rizzo, Pujitha Gunaratne, and Anuj Sharma. "Investigating Speed Deviation Patterns During Glucose Episodes: A Quantile Regression Approach." arXiv preprint arXiv:2310.02351 (2023). doi:https://doi.org/10.48550/arXiv.2310.02351

    Vision-based Analysis of Driver Activity and Driving Performance Under the Influence of Alcohol

    Full text link
    About 30% of all traffic crash fatalities in the United States involve drunk drivers, making the prevention of drunk driving paramount to vehicle safety in the US and other locations which have a high prevalence of driving while under the influence of alcohol. Driving impairment can be monitored through active use of sensors (when drivers are asked to engage in providing breath samples to a vehicle instrument or when pulled over by a police officer), but a more passive and robust mechanism of sensing may allow for wider adoption and benefit of intelligent systems that reduce drunk driving accidents. This could assist in identifying impaired drivers before they drive, or early in the driving process (before a crash or detection by law enforcement). In this research, we introduce a study which adopts a multi-modal ensemble of visual, thermal, audio, and chemical sensors to (1) examine the impact of acute alcohol administration on driving performance in a driving simulator, and (2) identify data-driven methods for detecting driving under the influence of alcohol. We describe computer vision and machine learning models for analyzing the driver's face in thermal imagery, and introduce a pipeline for training models on data collected from drivers with a range of breath-alcohol content levels, including discussion of relevant machine learning phenomena which can help in future experiment design for related studies.Comment: Withdrawn at the request of industry research collaborators, per contract agreemen

    MobiScout: A Scalable Cloud-Based Driving and Activity Monitoring Platform Featuring an IOS App and a WatchOS Extension

    No full text
    MobiScout is an iOS software that monitors users' driving habits and physiological conditions while on the road. The Mobiscout app was created to provide a low-cost next-generation data collection and analysis solution for naturalistic driving studies. MobiScout collects real-time data, including physiological information from drivers in their normal driving conditions using sensors and cameras on mobile phones, smartwatches, and Bluetooth-enabled OBD equipment. The MobiScout software captures vehicle and driving data, including speed, braking, pulse rate, and acceleration, while the phone's camera captures everything inside and outside the car. Data captured can be streamed to cloud storage in real-time or persisted in local storage in WIFI dead zones. The information gathered will be studied further to better understand typical traffic behavior, performance, surroundings, and driving context among drivers.This is a preprint from Adu-Gyamfi, Kojo Konadu, Karo Ahmadi-Dehrashid, Yaw Okyere Adu-Gyamfi, Pujitha Gunaratne, and Anuj Sharma. "MobiScout: A Scalable Cloud-Based Driving and Activity Monitoring Platform Featuring an IOS App and a WatchOS Extension." arXiv preprint arXiv:2308.05698 (2023). doi: https://doi.org/10.48550/arXiv.2308.05698. Copyright The Authors 2023. CC By

    A Portable Multi-Modal Cushion for Continuous Monitoring of a Driver’s Vital Signs

    No full text
    With higher levels of automation in vehicles, the need for robust driver monitoring systems increases, since it must be ensured that the driver can intervene at any moment. Drowsiness, stress and alcohol are still the main sources of driver distraction. However, physiological problems such as heart attacks and strokes also exhibit a significant risk for driver safety, especially with respect to the ageing population. In this paper, a portable cushion with four sensor units with multiple measurement modalities is presented. Capacitive electrocardiography, reflective photophlethysmography, magnetic induction measurement and seismocardiography are performed with the embedded sensors. The device can monitor the heart and respiratory rates of a vehicle driver. The promising results of the first proof-of-concept study with twenty participants in a driving simulator not only demonstrate the accuracy of the heart (above 70% of medical-grade heart rate estimations according to IEC 60601-2-27) and respiratory rate measurements (around 30% with errors below 2 BPM), but also that the cushion might be useful to monitor morphological changes in the capacitive electrocardiogram in some cases. The measurements can potentially be used to detect drowsiness and stress and thus the fitness of the driver, since heart rate variability and breathing rate variability can be captured. They are also useful for the early prediction of cardiovascular diseases, one of the main reasons for premature death. The data are publicly available in the UnoVis dataset
    corecore