127 research outputs found

    Molecular simulation study of the heat capacity of metastable water between 100K and 300K

    Get PDF
    Molecular simulation study of the heat capacity of metastable water between 100K and 300K Molecular simulations have been used to study the heat capacity of metastable liquid water at low temperature adsorbed on a smooth surface. These calculations aim at modelling water properties measured by experiments performed on water films adsorbed on Vycor nanoporous silica at low temperature. In particular, the study focuses on the non-monotonous variation of the heat capacity around between 100 and 300 K

    Adsorption-Induced Deformation of a Nanoporous Material: Influence of the Fluid-Adsorbent Interaction and Surface Freezing on the Pore-Load Modulus Measurement

    Get PDF
    Liquid adsorption in nanoporous materials induces their deformation due to strong capillary forces. The linear relationship between the liquid pressure and the solid strain (pore-load modulus) provides an experimental technique to determine the mechanical properties of nanosized solids. Puzzling experimental results have often been reported, leading to a severe reconsideration of the mechanical properties of the thin walls, the introduction of surface stresses, and the suggestion of a mutual influence of fluid adsorption and matrix deformation. This work presents a molecular simulation examination of the fundamentals of the pore-load measurement technique. The pore-load protocol is reproduced as in experiments by measuring the solid deformation in presence of the liquid ("numerical experiment"), and the result is compared to the expected mechanical response of the solid. Focusing on a single nanoplatelet mimicking silicon stiffness, we show that the pore-load protocol is valid as long as the liquid in the pores remains liquid. However, when an ordered layer can form at the solid surface, it significantly affects the pore-load measurement. It is shown that this may happen above the freezing point even for moderately strong fluid-solid interactions. This observation could help for the interpretation of experimental data, in particular in porous silicon, where the expected presence of atomically smooth surfaces could favor the formation of highly ordered fluid layers

    Effect of the reservoir size on gas adsorption in inhomogeneous porous media

    Get PDF
    We study the influence of the relative size of the reservoir on the adsorption isotherms of a fluid in disordered or inhomogeneous mesoporous solids. We consider both an atomistic model of a fluid in a simple, yet structured pore, whose adsorption isotherms are computed by molecular simulation, and a coarse-grained model for adsorption in a disordered mesoporous material, studied by a density functional approach in a local mean-field approximation. In both cases, the fluid inside the porous solid exchanges matter with a reservoir of gas that is at the same temperature and chemical potential and whose relative size can be varied, and the control parameter is the total number of molecules present in the porous sample and in the reservoir. Varying the relative sizes of the reservoir and the sample may change the shape of the hysteretic isotherms, leading to a "reentrant" behavior compared to the grand-canonical isotherm when the latter displays a jump in density. We relate these phenomena to the organization of the metastable states that are accessible for the adsorbed fluid at a given chemical potential or density.Comment: 16 page

    WIMP searches with superheated droplet detectors: Status and Prospects

    Get PDF
    SIMPLE (Superheated Instrument for Massive ParticLE searches) employs superheated droplet detectors (SDDs) to search for Weakly Interacting Massive Particle (WIMP) dark matter. As a result of the intrinsic SDD insensitivity to minimum ionizing particles and high fluorine content of target liquids, competitive WIMP limits were already obtained at the early prototype stage. We comment here on the expected immediate increase in sensitivity of the program and on future plans to exploit this promising technnique.Comment: 6 pages LaTeX, incl. 2 figures. Presented at the 3rd Intl. Workshop for the Identification of Dark Matter (IDM2000), York, Sept. 200

    First Results of the Phase II SIMPLE Dark Matter Search

    Full text link
    We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kgd Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of |a_p| < 0.32 for M_W = 50 GeV/c2 on the spin-dependent sector of weakly interacting massive particle-nucleus interactions with a 50% reduction in the previously allowed region of the phase space formerly defined by XENON, KIMS and PICASSO. In the spin-independent sector, a limit of 2.3x10-5 pb at M_W = 45 GeV/c2 is obtained.Comment: 4 pages, 4 figures; PRL-accepted version with corrected SI contour (Fig. 4

    The SIMPLE Phase II Dark Matter Search

    Full text link
    Phase II of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) searched for astroparticle dark matter using superheated liquid C2_{2}ClF5_{5} droplet detectors. Each droplet generally requires an energy deposition with linear energy transfer (LET) ≳\gtrsim 150 keV/ÎŒ\mum for a liquid-to-gas phase transition, providing an intrinsic rejection against minimum ionizing particles of order 10−10^{-10}, and reducing the backgrounds to primarily α\alpha and neutron-induced recoil events. The droplet phase transition generates a millimetric-sized gas bubble which is recorded by acoustic means. We describe the SIMPLE detectors, their acoustic instrumentation, and the characterizations, signal analysis and data selection which yield a particle-induced, "true nucleation" event detection efficiency of better than 97% at a 95% C.L. The recoil-α\alpha event discrimination, determined using detectors first irradiated with neutrons and then doped with alpha emitters, provides a recoil identification of better than 99%; it differs from those of COUPP and PICASSO primarily as a result of their different liquids with lower critical LETs. The science measurements, comprising two shielded arrays of fifteen detectors each and a total exposure of 27.77 kgd, are detailed. Removal of the 1.94 kgd Stage 1 installation period data, which had previously been mistakenly included in the data, reduces the science exposure from 20.18 to 18.24 kgd and provides new contour minima of σp\sigma_{p} = 4.3 ×\times 10−3^{-3} pb at 35 GeV/c2^{2} in the spin-dependent sector of WIMP-proton interactions and σN\sigma_{N} = 3.6 ×\times 10−6^{-6} pb at 35 GeV/c2^{2} in the spin-independent sector. These results are examined with respect to the fluorine spin and halo parameters used in the previous data analysis.Comment: 20 pages, 19 figures; accepted Physical Review

    Final Analysis and Results of the Phase II SIMPLE Dark Matter Search

    Full text link
    We report the final results of the Phase II SIMPLE measurements, comprising two run stages of 15 superheated droplet detectors each, the second stage including an improved neutron shielding. The analyses includes a refined signal analysis, and revised nucleation efficiency based on reanalysis of previously-reported monochromatic neutron irradiations. The combined results yield a contour minimum of \sigma_{p} = 4.2 x 10^-3 pb at 35 GeV/c^2 on the spin-dependent sector of WIMP-proton interactions, the most restrictive to date from a direct search experiment and overlapping for the first time results previously obtained only indirectly. In the spin-independent sector, a minimum of 3.6 x 10^-6 pb at 35 GeV/c^2 is achieved, with the exclusion contour challenging the recent CoGeNT region of current interest.Comment: revised, PRL-accepted version with slightly weakened limit contour

    Prospects for SIMPLE 2000: A large-mass, low-background Superheated Droplet Detector for WIMP searches

    Get PDF
    SIMPLE 2000 (Superheated Instrument for Massive ParticLE searches) will consist of an array of eight to sixteen large active mass (∌15\sim15 g) Superheated Droplet Detectors(SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make of SDDs an attractive approach for the detection of Weakly Interacting Massive Particles (WIMPs), namely their intrinsic insensitivity to minimum ionizing particles, high fluorine content, low cost and operation near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from SIMPLE prototype SDDs, as well as on the expected immediate increase in sensitivity of the program, which aims at an exposure of >>25 kg-day during the year 2000. The ability of modest-mass fluorine-rich detectors to explore regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out.Comment: 19 pages, 10 figures included. New Journal of Physics, in pres
    • 

    corecore