62 research outputs found

    BRCA 1/2-Mutation Related and Sporadic Breast and Ovarian Cancers: More Alike than Different

    Get PDF
    No longer is histology solely predictive of cancer treatment and outcome. There is an increasing influence of tumor genomic characteristics on therapeutic options. Both breast and ovarian cancers are at higher risk of development in patients with BRCA 1/2-germline mutations. Recent data from the Cancer Genome Atlas (TCGA) and others have shown a number of genomic similarities between triple negative breast cancers and ovarian cancers. Recently, poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising activity in hereditary BRCA 1/2-mutated and sporadic breast and ovarian cancers. In this review, we will summarize the current literature regarding the genomic and phenotypic similarities between BRCA 1/2-mutation related cancers, sporadic triple negative breast cancers, and sporadic ovarian cancers. We will also review phase I, II, and III data using PARP inhibitors for these malignancies and compare and contrast the results with respect to histology

    Targeted Mutation Detection in Advanced Breast Cancer Using MammaSeq Identifies RET as a Potential Contributor to Breast Cancer Metastasis

    Get PDF
    The lack of any reported breast cancer specific diagnostic NGS tests inspired the development of MammaSeq, an amplicon based NGS panel built specifically for use in advanced breast cancer. In a pilot study to define the clinical utility of the panel, 46 solid tumor samples, plus an additional 14 samples of circulating-free DNA (cfDNA) from patients with advanced breast cancer were sequenced and analyzed using the OncoKB precision oncology database. We identified 26 clinically actionable variants (levels 1-3) annotated by the OncoKB precision oncology database, distributed across 20 out of 46 solid tumor cases (40%), and 4 clinically actionable mutations distributed across 4 samples in the 14 cfDNA sample cohort (29%). The mutation allele (MAF) frequencies of ESR1-D538G and FOXA1-Y175C mutations correlated with CA.27.29 levels in patient-matched blood, indicating that MAF may be a reliable marker for disease burden. Interestingly, 4 of the mutations found in metastatic samples occurred in the gene RET, an oncogenic receptor tyrosine kinase. In an orthogonal study, the lab has recently identified RET as one of the most recurrently upregulated genes in breast cancer brain metastases. Interestingly, the ligand for RET is the family of glial-cell derived neurotrophic factors (GDNF), a growth factor secreted by glial cells of the central nervous system. This lead to the hypothesis that RET overexpression facilitates breast cancer brain metastasis in response to the high levels of GDNF, while RET activating point mutations increase metastatic capacity without specific organ tropism. While the effect of GDNF treatment on proliferation in 2D was limited, in ultra-low attachment (ULA) plates we saw a significant increase in anchorage independent growth of MCF-7 cells. To determine if GDNF acts as a chemoattractant for RET positive BrCa cells, we utilized a transwell migration assay, with GDNF as the sole chemoattractant. When RET was overexpressed, there was a visual increase in cell migration. Together, these studies demonstrate the clinical feasibility of using MammaSeq to detect clinically actionable mutations in breast cancer patients, and provides provisional data supporting the investigation of RET signaling as a potentially targetable mediator of breast cancer brain metastasis

    Abemaciclib in Combination With Endocrine Therapy for Patients With Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer: A Phase 1b Study

    Get PDF
    Background Cyclin-dependent kinases (CDK) 4 and 6 regulate G1 to S cell cycle progression and are often altered in cancers. Abemaciclib is a selective inhibitor of CDK4 and CDK6 approved for administration on a continuous dosing schedule as monotherapy or as combination therapy with an aromatase inhibitor or fulvestrant in patients with advanced or metastatic breast cancer. This Phase 1b study evaluated the safety and tolerability, pharmacokinetics, and antitumor activity of abemaciclib in combination with endocrine therapy for metastatic breast cancer (MBC), including aromatase inhibitors (letrozole, anastrozole, or exemestane) or tamoxifen. Patients and Methods Women ≥18 years old with hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2-) MBC were eligible for enrollment. Eligibility included measurable disease or non-measurable but evaluable bone disease by Response Evaluation Criteria in Solid Tumours (RECIST) v1.1, Eastern Cooperative Oncology Group performance status 0–1, and no prior chemotherapy for metastatic disease. Adverse events were graded by the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 and tumor response were assessed by RECIST v1.1. Results Sixty-seven patients were enrolled and received abemaciclib 200 mg every 12 hours in combination with letrozole (Part A, n=20), anastrozole (Part B, n=16), tamoxifen (Part C, n=16), or exemestane (Part D, n=15). The most common treatment-emergent adverse events (TEAE) were diarrhea, fatigue, nausea, and abdominal pain. Grade 4 TEAEs were reported in five patients (one each with hyperglycemia, hypertension, neutropenia, procedural hemorrhage, and sepsis). There was no effect of abemaciclib or endocrine therapy on the pharmacokinetics of any combination study drug. Across all treated patients, the median progression-free survival was 25.4 months (95% confidence interval: 18.0, 35.8). The objective response rate was 38.9% in 36 patients with measurable disease. Conclusions Abemaciclib in combination with multiple endocrine therapy options exhibited manageable safety and promising antitumor activity in patients with HR+, HER2- MBC. Clinical Trial Registration https://clinicaltrials.gov/, identifier NCT0205713

    TBCRC 018: phase II study of iniparib in combination with irinotecan to treat progressive triple negative breast cancer brain metastases

    Get PDF
    Nearly half of patients with advanced triple negative breast cancer (TNBC) develop brain metastases (BM) and most will also have uncontrolled extracranial disease. This study evaluated the safety and efficacy of iniparib, a small molecule anti-cancer agent that alters reactive oxygen species tumor metabolism and penetrates the blood brain barrier, with the topoisomerase I inhibitor irinotecan in patients with TNBC-BM. Eligible patients had TNBC with new or progressive BM and received irinotecan and iniparib every 3weeks. Time to progression (TTP) was the primary end point; secondary endpoints were response rate (RR), clinical benefit rate (CBR), overall survival (OS), toxicity, and health-related quality of life. Correlative endpoints included molecular subtyping and gene expression studies on pre-treatment archival tissues, and determination of germline BRCA1/2 status. Thirty-seven patients began treatment; 34 were evaluable for efficacy. Five of 24 patients were known to carry a BRCA germline mutation (4 BRCA1, 1 BRCA2). Median TTP was 2.14months and median OS was 7.8months. Intracranial RR was 12%, while intracranial CBR was 27%. Treatment was well-tolerated; the most common grade 3/4 adverse events were neutropenia and fatigue. Grade 3/4 diarrhea was rare (3%). Intrinsic subtyping revealed 19 of 21 tumors (79%) were basal-like, and intracranial response was associated with high expression of proliferation-related genes. This study suggests a modest benefit of irinotecan plus iniparib in progressive TNBC-BM. More importantly, this trial design is feasible and lays the foundation for additional studies for this treatment-refractory disease.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-014-3039-y) contains supplementary material, which is available to authorized users

    TBCRC 018: phase II study of iniparib in combination with irinotecan to treat progressive triple negative breast cancer brain metastases

    Get PDF
    Nearly half of patients with advanced triple negative breast cancer (TNBC) develop brain metastases (BM) and most will also have uncontrolled extracranial disease. This study evaluated the safety and efficacy of iniparib, a small molecule anti-cancer agent that alters reactive oxygen species tumor metabolism and penetrates the blood brain barrier, with the topoisomerase I inhibitor irinotecan in patients with TNBC-BM. Eligible patients had TNBC with new or progressive BM and received irinotecan and iniparib every 3 weeks. Time to progression (TTP) was the primary end point; secondary endpoints were response rate (RR), clinical benefit rate (CBR), overall survival (OS), toxicity, and health-related quality of life. Correlative endpoints included molecular subtyping and gene expression studies on pre-treatment archival tissues, and determination of germline BRCA1/2 status. Thirty-seven patients began treatment; 34 were evaluable for efficacy. Five of 24 patients were known to carry a BRCA germline mutation (4 BRCA1, 1 BRCA2). Median TTP was 2.14 months and median OS was 7.8 months. Intracranial RR was 12 %, while intracranial CBR was 27 %. Treatment was well-tolerated; the most common grade 3/4 adverse events were neutropenia and fatigue. Grade 3/4 diarrhea was rare (3 %). Intrinsic subtyping revealed 19 of 21 tumors (79 %) were basal-like, and intracranial response was associated with high expression of proliferation-related genes. This study suggests a modest benefit of irinotecan plus iniparib in progressive TNBC-BM. More importantly, this trial design is feasible and lays the foundation for additional studies for this treatment-refractory disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-014-3039-y) contains supplementary material, which is available to authorized users

    Ixabepilone: a new chemotherapeutic option for refractory metastatic breast cancer

    No full text
    Shannon Puhalla, Adam BrufskyUPMC Magee-Womens Cancer Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USAAbstract: Taxane therapy is commonly used in the treatment of metastatic breast cancer. However, most patients will eventually become refractory to these agents. Ixabepilone is a newly approved chemotherapeutic agent for the treatment of metastatic breast cancer. Although it targets microtubules similarly to docetaxel and paclitaxel, ixabepilone has activity in patients that are refractory to taxanes. This review summarizes the pharmacology of ixapebilone and clinical trials with the drug both as a single agent and in combination. Data were obtained using searches of PubMed and abstracts of the annual meetings of the American Society of Clinical Oncology and the San Antonio Breast Cancer Symposium from 1995 to 2008. Ixapebilone is a semi-synthetic analog of epothilone B that acts to induce apoptosis of cancer cells via the stabilization of microtubules. Phase I clinical trials have employed various dosing schedules ranging from daily to weekly to 3-weekly. Dose-limiting toxicites included neuropathy and neutropenia. Responses were seen in a variety of tumor types. Phase II studies verified activity in taxane-refractory metastatic breast cancer. The FDA has approved ixabepilone for use as monotherapy and in combination with capecitabine for the treatment of metastatic breast cancer. Ixabepilone is an efficacious option for patients with refractory metastatic breast cancer. The safety profile is similar to that of taxanes, with neuropathy and neutropenia being dose-limiting. Studies are ongoing with the use of both iv and oral formulations and in combination with other chemotherapeutic and biologic agents.Keywords: ixabepilone, epothilone, metastatic breast cancer, taxane-refractor

    Yield of adequate tissue on research biopsies with pathologic review.

    No full text

    Should We Embrace or Ablate Our Urge to (Ovarian) Suppress?

    No full text
    corecore