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Targeted Mutation Detection in Advanced Breast Cancer Using MammaSeqTM Identifies 

RET as a Potential Contributor to Breast Cancer Metastasis 

Nicholas Smith 

University of Pittsburgh, 2018 

The lack of any reported breast cancer specific diagnostic NGS tests inspired the development of 

MammaSeq, an amplicon based NGS panel built specifically for use in advanced breast cancer. In 

a pilot study to define the clinical utility of the panel, 46 solid tumor samples, plus an additional 

14 samples of circulating-free DNA (cfDNA) from patients with advanced breast cancer were 

sequenced and analyzed using the OncoKB precision oncology database. We identified 26 

clinically actionable variants (levels 1-3) annotated by the OncoKB precision oncology database, 

distributed across 20 out of 46 solid tumor cases (40%), and 4 clinically actionable mutations 

distributed across 4 samples in the 14 cfDNA sample cohort (29%). The mutation allele (MAF) 

frequencies of ESR1-D538G and FOXA1-Y175C mutations correlated with CA.27.29 levels in 

patient-matched blood, indicating that MAF may be a reliable marker for disease burden. 

Interestingly, 4 of the mutations found in metastatic samples occurred in the gene RET, an 

oncogenic receptor tyrosine kinase. In an orthogonal study, the lab has recently identified RET as 

one of the most recurrently upregulated genes in breast cancer brain metastases. Interestingly, the 

ligand for RET is the family of glial-cell derived neurotrophic factors (GDNF), a growth factor 

secreted by glial cells of the central nervous system. This lead to the hypothesis that RET 

overexpression facilitates breast cancer brain metastasis in response to the high levels of GDNF, 

while RET activating point mutations increase metastatic capacity without specific organ tropism. 

While the effect of GDNF treatment on proliferation in 2D was limited, in ultra-low attachment 
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(ULA) plates we saw a significant increase in anchorage independent growth of MCF-7 cells. To 

determine if GDNF acts as a chemoattractant for RET positive BrCa cells, we utilized a transwell 

migration assay, with GDNF as the sole chemoattractant. When RET was overexpressed, there 

was a visual increase in cell migration. Together, these studies demonstrate the clinical feasibility 

of using MammaSeq to detect clinically actionable mutations in breast cancer patients, and 

provides provisional data supporting the investigation of RET signaling as a potentially targetable 

mediator of breast cancer brain metastasis.  
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1.0 INTRODUCTION 

Breast cancer (BrCa) is the second leading cause of cancer death among women, accounting for 

more than 40,000 deaths each year in the United States alone[1]. While incidence has increased 

over the past 5 years, outcomes have consistently improved, with a current 5-year survival rate 

over 90%[2]. This improvement is largely due to advances in detection methods and the success 

of targeted therapies, driven by breakthroughs in understanding the molecular mechanisms of the 

disease.  

1.1 Breast Cancer and Precision Medicine 

BrCa has served as the model success story for precision medicine as targeted therapies represent 

front line therapy for roughly 85% of BrCa patients, either through endocrine therapies or HER2 

targeting therapies. The most primitive form of endocrine therapy started in 1895 when George 

Thomas Beatson performed a bilateral oophorectomy on a patient with recurrent breast cancer, 

leading to complete remission and 4 years of post-surgery survival[3]. In 1872, Alfred Heger, who 

was treating a benign disease at the time, noted the physiological effects of an oophorectomy, the 

first documented case of surgical menopause. 10 years later, Thomas William Nunn reported a 

case of a women with breast cancer, who’s disease completely regressed 6 months after her 

menstruation ceased[4]. Although these 3 investigators did not know it at the time, they 

demonstrated the relationship between the ovaries, estrogen, and mammary cancers. 

Nearly 100 years later, in 1971 Jensen et al. noted the association between estrogen 

receptor (ER - Primarily ERD encoded by the gene ESR1) expression and patient response to 

adrenalectomies [5](in pre-menopausal women the vast majority of estrogen is produced in the 

ovaries, in post-menopausal women limited amounts of estrogen are produced in a variety of 

secondary organs including the adrenal glands). This led to the notion of estrogen and the ER as 
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being drivers in the vast majority of breast cancers. In 1977, tamoxifen, an ER antagonist that was 

originally developed as a contraceptive, gained FDA approval for the treatment of advanced BrCa. 

This was the first form of a targeted therapy for the treatment of cancer[6].  

 HER2, the other major biomarker that guides treatment decisions in BrCa, is a more 

straight-forward success story. The gene (ERBB2) was found to be amplified in a BrCa cell line, 

inspiring Dennis Salmon et al. to screen a large cohort of breast tumor samples. They found that 

gene was amplified is nearly 30% breast cancers [7] (more recent studies estimate it is actually 

closer to 20%[8]). This lead to the development of trastuzumab, a humanized monoclonal antibody 

targeting the extracellular domain of the receptor - approved for the treatment of HER2 positive 

BrCa in 1998[9]. This concept of developing targeted therapies specific for driver events, and 

tailoring treatment regimens for individual tumors is the backbone of precision medicine.  

1.2 Subtypes of Breast Cancer 

Despite falling under the umbrella of a single name, BrCa is not a single disease. Accumulating 

evidence suggests that subsets of BrCa with unique histopathological and molecular characteristics 

display different patterns of behavior and different responses to therapies[10]. Therefore, 

accurately stratifying patients into clinically relevant subgroups is of particular importance for 

therapeutic decision making. 

 From a histopathological perspective, there are two major subtypes of BrCa; invasive 

ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). IDC accounts for roughly 80% of 

all diagnosed BrCa cases, while ILC accounts for 10-15% and several other rare subtypes account 

for the remaining 5-10%[11]. ILCs, typically diagnosed by a pathologist with classical H&E 

staining, have a unique linear, discohesive growth pattern, the result of the loss of functional E-
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Cadherin. Previous studies have shown the E-Cadherin is lost at the protein level in 90-100% of 

ILC tumors[12].  

Currently, therapeutic decisions are driven by classic immunohistochemistry (IHC) 

markers, including the estrogen receptor, progesterone receptor (PR), and HER2, combined with 

patient and pathological variables such as age, tumor size, tumor grade, and node involvement[13, 

14]. Despite the prognostic power of classic IHC markers, the vast number of genes that can 

contribute to cell proliferation means that these markers can become limited in advanced settings. 

In 2000, Perou et al. used a genome wide (~8,000 genes) microarray to first define the four major 

intrinsic subtypes of breast cancer: Luminal A, Luminal B, HER2 positive, and Basal [15] (later 

refined with an expanded cohort[16]).  

These four subtypes were distilled into a 50 gene classifier, termed the PAM50[17], that 

has demonstrated prognostic value[18]. NanoString utilized this PAM50 signature to develop a 

clinical prognostic assay to predict the likelihood of recurrence, ProsignaTM[19], that was granted 

FDA approval in 2013.  This inspired the development of additional prognostic gene signature 

assays, OncoType DXTM[20] and MammaPrintTM[21],  that can help clinicians identify patients 

that can safely forego adjuvant chemotherapy.  

1.3 Treatment Options in Breast Cancer 

Ultimately, all treatment decisions are made on an individual basis by physicians and patients. 

However, front-line therapy remains highly consistent across the major intrinsic subtypes. Surgery 

and radiotherapy are utilized across all subtypes. ER positive tumors are offered endocrine therapy, 

either in the form of an ER targeting agent (such as tamoxifen or fulvestrant) or an aromatase 

inhibitor (such as letrozole)[22]. ER targeting agents that act as competitive antagonists are termed 

Selective Estrogen Receptor Modulators (SERMs), while agents that bind to ER destabilizing the 
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protein, preventing dimerization, and ultimately leading to protein degradation are referred to as 

Selective Estrogen Receptor Degraders (SERDs). Aromatase inhibitors, which are generally 

offered for post-menopausal women, inhibit the enzyme aromatase (also known as estrogen 

synthase) in periphery organs, the enzyme responsible for the vast majority of estrogen production 

in post-menopausal women[23]. HER2 positive tumors are offered a HER2 targeted therapies, 

most commonly trastuzumab[24]. Patients with basal (commonly referred to as triple negative) 

disease are uniformly given chemotherapy. Patients with ‘high risk’ ER and HER2 positive disease 

are also commonly given chemotherapy to reduce the chance of recurrence[25].  

1.4 Therapy Resistance 

While ER and HER2 targeted therapies have dramatically improved patient care, approximately 

25% of all BrCa patients will eventually relapse, with acquired therapy resistance posing a major 

clinical challenge[26]. Roughly 25% of patients with primary ER-positive disease, and nearly all 

of those with metastatic disease will eventually develop endocrine therapy resistance[26]. Recent 

studies have highlighted activating mutations in the ligand binding domain of ESR1 as a common 

mechanism of therapy resistance. Occurring in roughly 20% of metastatic ER positive tumors, 

these mutations are believed to confer ligand independent activity[27]. Amplifications in other 

growth factor receptors including FGFRs and ERBBs have been shown to replace the functional 

loss of  ER expression, helping to maintain activation of mitogenic pathways such as Pi3K/AKT 

and MAPK/ERK[28-30]. Similar resistance mechanisms exist for HER2 targeted therapies. A 

truncated isoform of HER2 has been shown to confer resistance to trastuzumab, while gatekeeper 

mutations have been proposed to reduce the efficacy of small molecule HER2 inhibitors[31, 32].  
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1.5 Mutational Landscape in Primary and Metastatic Breast Cancer 

Large-scale sequencing and microarray studies from The Cancer Genome Atlas (TCGA[33]) and 

the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC[34]) have 

helped to shed light onto just how incredibly complex and heterogeneous cancers are, and helped 

to identify novel genetic drivers. However, recurrent point mutations in BrCa are rare, with only 

TP53, PI3KCA, and GATA3 being mutated in more than 10% of primary tumor samples[35]. Few 

studies have found specific patterns of mutations within the major subtypes of BrCa. For example, 

ER positive tumors are often found to have activating mutation in the PI3K/AKT pathway and 

inactivation of GATA3 and the JUN pathway. Triple negative tumors most often present with TP53 

mutations, and extensive copy-number variation[35].   

 With such few recurrent mechanisms of therapy resistance, screening tumors for genomic 

drivers with sequencing-based assays has become more and more routine, helping to match 

patients with targeted therapy clinical trials. Independent of the previously described expression-

based prognostics, companies and university labs have also begun to develop targeted DNA 

sequencing panels to identify pathological driver mutations. Two mutation profiling panels that 

can be used to help oncologist match patients with clinical trials, the Memorial Sloan Kettering – 

Integrated Mutational Profiling of Actionable Cancer Targets[36] (MSK-IMPACTTM) and the 

Foundation Medicine - Foundation ONETM[37], have recently been granted FDA approval.  

1.6 Breast Cancer Recurrence and Metastasis 

Much of the success of novel therapies in cancer can be attributed to an increase in the 

understanding in the biology of the disease. While survival rates for primary BrCa have continued 

to improve over the past 5 years, prognosis for women diagnosed with recurrent or metastatic 

disease has remained bleak (5yr survival of ~25%)[38]. Approximately 10-15% of patients 



 

 6 

diagnosed with BrCa will develop a distant metastasis within 3 years of the initial diagnosis[39]. 

That said, recurrent metastatic lesions appearing 10 or more years after initial diagnosis is not 

uncommon either, meaning women in remission are never true free of the burden of potential 

relapse.   

 Breast cancers can reoccur locally, within the breast tissue or chest wall, or at distant 

metastatic sites. The most common sites of distant metastasis for breast cancer are bone, liver, lung 

and brain [39]. Metastasis is a multistep process that includes acquiring an aggressive self-

renewing phenotype, detachment from the extracellular matrix, invasion into surrounding tissue, 

penetrating into and surviving the mechanical stresses in circulation, lodging into the capillaries 

of a secondary organ, extravasation out of the blood stream, and overt colonization in a novel 

microenvironment, all the while fending off the immune system and systemic therapies[40, 41]. 

Metastatic lesions can then repeat the entire process, leading to further diversification of cells and 

tumors. The final step in this process, colonization, represents the single greatest challenge for 

cancer cells, as the vast majority will undergo apoptosis when exposed to paracrine and juxtracrine 

signaling in a novel microenvironment. An estimated 0.01-0.02% of disseminated cancer cells are 

able to successfully generate a metastatic lesion[42].  

1.7 Metastatic Tropism 

Given the extensive body of evidence showing the dynamic interactions between cancer cells and 

the surrounding microenvironment, it is no surprise that certain genetic features can ‘prime’ cells 

for colonization in specific distant organs (Briefly reviewed [43]). This is the basis of the “Seed 

and soil” hypothesis, originally proposed by Stephen Paget in 1889[44]. To date, the dynamics 

that mediate metastatic tropism are largely unknown.  
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 Perhaps the greatest piece of evidence for the seed and soil hypothesis is the dramatically 

different pattern of metastasis among cancer types. Nearly 50% of patients with metastatic lung 

cancer will develop brain metastases, compared to roughly 25% for BrCa patients and just below 

20% for melanoma patients[1, 45]. Meanwhile, other common malignancies such as thyroid, 

gastrointestinal, and prostate cancer rarely ever form metastases in the central nervous system[46].   

 In an attempt to identify genes that mediate BrCa brain metastasis, Bos et al. [47]performed 

comparative genome-wide expression analysis on parental, and matched brain homing cell line 

variants. They identified COX2, HB-EGF, and ST6GALNAC5 as important mediators of 

extravasation through the blood brain barrier. Lee et al.[48] used an in vitro blood brain barrier 

model to show that CXCL12-CXCR4 signaling promoted MDA-MB-231 transendothelial 

migration through a monolayer of human brain microvascular endothelial cells. Multiple 

independent studies have shown that ERBB2 overexpression and PTEN loss are positively selected 

for in patient matched brain metastases[49, 50]. Multiple studies have also highlighted the 

importance of HER3, HER2-HER3 heterodimerization and the PI3K/AKT pathway in the 

formation of therapy resistant brain metastases [51-53].  

 In the next chapter, I describe the development and validation of MammaSeq, a targeted 

sequencing panel designed based on current knowledge of the most common, impactful, and 

targetable drivers of metastatic breast cancer. Through the validation of MammaSeq, we identified 

several RET mutations that, bioinformatically, appear as though they may play a functional role in 

tumorigenesis. In two other recently completed studies from the Lee Lab, RET appeared as a 

potential mediator of BrCa brain metastasis. In chapter 2, I investigate the hypothesis that the 

overexpression of RET, facilitates BrCa brain metastasis, due to the high levels of the RET ligand, 

GDNF, in the brain microenvironment.  
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2.0 TARGETED MUTATION DETECTION IN ADVANCED BREAST 

CANCER USING MAMMASEQ 

 

*This chapter is an amended version of our previous publication[54].  
 

2.1 BACKGROUND 

Advanced breast cancer is currently incurable. Selection of systematic therapies is primarily based 

on clinical and histological features and molecular subtype, as defined by clinical assays[55]. 

Large-scale genomic studies have shed light into the heterogeneity of breast cancer and its 

evolution to advanced disease[35, 56], and coupled with the rapid advancement of targeted 

therapies, highlights the need for more sophisticated diagnostics in cancer management[57].  

Next-generation sequencing (NGS) based diagnostics allow clinicians to identify specific putative 

driver events in individual tumors. Correctly identifying disease drivers may enable clinicians to 

better predict treatment responses, and significantly improve patient care[58]. However, to date, 

the use of NGS in clinical diagnostics remains limited[59]. Published data regarding prognostic 

utility, and utilization for selection of targeted therapies or enrolment in clinical trials is far from 

comprehensive.  

The AmpliSeq Cancer Hotspot Panel (ThermoFisher Scientific) was shown to have a 

diagnostic suitability in primary lung, colon, and pancreatic cancers[60], however, our previous 

report that surveyed the clinical usefulness of the 50 gene AmpliSeq Cancer Hotspot Panel V2 in 

breast cancer found that the panel lacked numerous key known drivers of advanced breast 

cancer[61]. For example, the panel does not include any amplicons in ESR1, which harbor 

mutations which are known to contribute to hormone therapy resistance (for review see[26]), and 

lacks coverage of the majority of known driver mutations in ERBBB[62].  
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The lack of any reported breast cancer specific diagnostic NGS test inspired the 

development of MammaSeqTM, an amplicon based NGS panel built specifically for use in 

advanced breast cancer. 46 solid tumor samples from women with advanced breast cancer, plus an 

additional 14 samples of circulating-free DNA (cfDNA) from patients with metastatic breast 

cancer were used in this pilot study to define the clinical utility of the panel. The patient cohort 

encompassed all 3 major molecular subtypes of breast cancer (luminal, HER2 positive and triple 

negative), and both lobular and ductal carcinomas (Table 1).   

 

 

 

 

Patients with available 
tumor tissue (n=46)

Age
Median age (yrs) 45
Range (yrs) 31-71

Race
White 45 (97.8%)
Black 1 (2.2%)

Site
Primary 10 (21.7%)
Metastatic 36 (78.3%)

Stage (Dx)
I 10 (21.7%)
II 8 (17.4%)
III 13 (28.3%)
IV 4 (8.7%)
Unknown 11 (23.9%)

Hormone-receptor 
HR + and HER2 – 19 (41.3%)
HR + and HER2 +  5 (10.9%)
HR + and HER2 Unknown 1 (2.2%)
HR – and HER2 + 1 (2.2%)
HR – and HER2 – 17 (36.9%)
Both Unknown 2 (4.3%)

Histopathology
Ductal 34 (73.9%)
Lobular 5 (10.9%)
Mixed  3 (6.5%%)
Other/Unknown 4 (8.7%)

Table 1: Patient and Specimen Characteristics.
Table 1: Patient and Specimen Characteristics. 
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2.2 MATERIALS AND METHODS: 

2.2.1 Patient Sample Collection 

For MammaSeq NGS testing, this study utilized breast tumors from 46 patients and blood samples 

from 7 patients. The research was performed under the University of Pittsburgh IRB approved 

protocol PRO16030066. The general patient characteristics are shown in Table 1 and more detailed 

patient information is shown in Table 4. We utilized 46 of the 48 breast cancer cases previously 

described in a report by Gurda et al.[63]. All of these cases previously underwent AmpliSeq 

Cancer Hotspot Panel V2 (ThermoFisher Scientific) NGS testing between January 1, 2013 and 

March 31, 2015 within the UPMC health system. MammaSeq was performed on the identical 

genomic DNA isolated from these tumor specimens that was originally used for initial clinical 

testing. 2 cases were excluded due to insufficient DNA. In addition, a cohort of 7 patients with 

metastatic breast cancer (MBC) had 20ml venous blood drawn in Streck Cell-Free DNA tubes 

between July 1, 2014 and March 29, 2016. All patients signed informed consent, and samples were 

acquired under the University of Pittsburgh IRB approved protocol (IRB0502025). We previously 

reported on the detection of ESR1 mutations in cfDNA from these 7 patients using ddPCR[64]. 

Serial blood draws (range; 2-5) were available for 4 patients. A total of 14 blood samples from 7 

patients were utilized for cfDNA, buffy coat DNA isolation, and NGS testing followed by ddPCR. 

2.2.2 Patient Sample Processing 

cfDNA was isolated as described previously[64]. Blood was processed to separate plasma and 

buffy coat by double centrifugation within 4 days of blood collection. 1ml to 4ml of plasma was 

used for isolation of cfDNA using QIAamp Circulating Nucleic Acid kit (Qiagen). cfDNA was 

quantified using Qubit dsDNA HS assay kit (ThermoFisher Scientific). Genomic DNA was 

isolated from buffy coat using DNeasy Blood & Tissue Kit (Qiagen) for use as germline DNA 
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control. Buffy coat DNA was quantified using Qubit dsDNA BR assay kit (ThermoFisher 

Scientific). 

2.2.3 Ion Torrent Sequencing 

20ng of DNA (10ng per amplicon pool) was used for library preparation using Ion AmpliSeq™ 

Library Kit 2.0 (Thermo Fisher Scientific) and the custom designed MammaSeq primer panel 

(Supplementary Data File 1). Template preparation by emulsion PCR and enrichment was 

performed on the Ion OneTouch 2 system (ThermoFisher Scientific). Template positive Ion Sphere 

particles (ISP) were loaded onto Ion chips and sequenced. Tumor DNA and cfDNA samples were 

sequenced using P1 chips (60 million reads) on the Ion ProtonTM (ThermoFisher Scientific) at 

empirical depths of 1000x and 5000x respectively. Buffy coat DNA was sequenced using a 318 

chip (6 million reads) on the Ion Torrent Personal Genome Machine (PGMTM, ThermoFisher 

Scientific) at 500x (Sequencing done by the University of Pittsburgh Health Sciences Genome 

Research Core).  

2.2.4 Variant Calling 

Ion Torrent Suite V4.0 was used to align raw fastq files to the hg19 reference genome and generate 

VCF files (4.0% AF cutoff for tumor samples, 1.0% AF cutoff for cfDNA samples). Cravat 

CHASM-v4.3 (http://hg19.cravat.us/CRAVAT/) was used to annotate variants with resulting 

protein changes and snp annotation from ExAC[65] and 1000Genomes[66]. Variant calls from 

buffy coat DNA were used to remove germline variants from the 14 cfDNA samples in a patient 

matched manner.  SNP and sequencing artifact filtering, data organization, and figure preparation 

were performed in R (v3.4.2). The R package ComplexHeatmaps was used to generate figures 1 

and 3A[67]. CNVKit was used to call copy number across all genes, however only genes 

containing more than 3 amplicons were reported (Table 2)[68]. DNA from the buffy coat of the 
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cfDNA cohort was used to generate a single copy-number reference which was used as a baseline 

for copy number calling on the solid tumor cohort. CNKit reports copy number as a log2 ratio 

change. CNV were reported if the absolute copy number was above 6 (log2(6/2)=1.58) or below 

1 (log2(1/2) = -1 ).   

2.2.5 Data and code 

Annotated, unfiltered, mutation and CNV data, along with R code related to this study, are 

deposited on GitHub. (https://github.com/smithng1215) 

2.2.6 Droplet-Digital PCR 

2 ng of cfDNA or buffy coat DNA was subjected to targeted high-fidelity preamplification for 15 

cycles using custom designed primers (Table 5) and PCR conditions previously described[64]. 

Targeted preamplification products were purified using QIAquick PCR Purification kit (Qiagen) 

and diluted at 1:20 before use in ddPCR reaction. 1.5ul of diluted preamplified DNA was used as 

input for ddPCR reaction. ddPCR was performed for ESR1-D538G, FOXA1-Y175C, and 

PIK3CA-H1047R mutations. Custom ddPCR assays were developed for ESR1-D538G (Integrated 

DNA Technologies) and FOXA1-Y175C (ThermoFisher Scientific). Sequences are described in 

Table 6. PIK3CA-H1047R was analyzed using PrimePCR ddPCR assay (Bio-Rad Laboratories) 

dHsaCP2000078 (PIK3CA)/ dHsaCP2000077 (H1047R). Nuclease-free water and buffy coat-

derived wildtype genomic DNA as negative controls, and oligonucleotides carrying mutation of 

interest or DNA from a cell line with mutation as positive controls were included in each run to 

eliminate potential false positive mutant signals. An allele frequency of 0.1% was used as a lower 

limit of detection.  
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2.2.7 Statistical Analysis 

All statistical analysis was performed in R 3.4.2. To determine if there was a significant correlation 

between mutational burden and copy number burden, we calculated the Pearson correlation 

coefficient between the number of somatic mutations in each sample, with the number of 

significant copy number changes in each sample.  

2.3 RESULTS 

2.3.1 Development of MammaSeq Panel 

To build a comprehensive list of somatic mutations in breast cancer, Drs. Hartmaier and Bahreini 

(from the Lee-Oesterreich lab) combined mutation calls from primary tumors in TCGA (curated 

list level 2.1.0.0) and limited studies focused on metastatic breast cancer [69-71]. The biological 

function and druggablity of mutated genes were investigated via Gene Ontology (GO) [72] and 

DGIdb (v2.0) databases [73]. The information regarding FDA approved drugs was downloaded 

from “https://www.fda.gov/Drugs” and added to our list. We used the following criteria to 

prioritize the clinically important mutated genes: 

x The mutated gene is among significantly mutated genes (SMGs) in primary and metastatic 

samples. 

x The mutated gene is clinically actionable (e.g. there is available FDA-approved drug(s) 

against it). 

x The mutated gene is of functional importance in cancer (e.g. kinase genes were scored 

higher in the list). 

x The mutation has been found in more than 5 primary tumors OR 2 metastatic tumors. 

x The mutation has been found in both primary and metastatic lesions. 
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The final mutation list was then curated and narrowed down to 80 genes and 1398 mutations. 

Additional amplicons were added to select genes to ensure sufficient coverage of genes known to 

harbor functional copy-number variants. Amplicon probe design was unsuccessful for 29 

mutations, including all 3 mutations in the gene HLA-A, yielding a final panel consisting of 688 

amplicons targeting 1369 mutations across 79 genes. (Selected genes described in Table 2. Gene 

coverage depicted in Figure 12).  

 The panel includes 34 of the 50 (68%) genes incorporated in AmpliSeq Cancer Hotspot 

Panel V2. Genes that were not mutated in breast cancer (TCGA and in-house data) and genes that 

were not considered to be clinically actionable were not included. The MammaSeq panel includes 

8 of the 10 (80%) genes and ~ 91% of the hotspots targeted by the Thermo Oncomine Breast 

cfDNA assay. MammaSeq covers 14% of the base pairs covered by the Qiagen Human Breast 

Cancer GeneRead DNAseq Targeted Array, however, it covers hotspots in over half of the genes 

(57%, plus an additional 34 genes). Of these panels, MammaSeq is the only one that includes 

ABL1 CDK6 FGFR3 KDR NOTCH1
AKT1 CDKN1B FGFR4 KIT NRAS
AKT3 CDKN2A FOXA1 KMT2C PAK1
ALK CDKN2B GATA3 KRAS* PDGFRA
AR CTCF GRB7 MAP2K4 PIK3CA

ARID1A CTNNB1 HIST2H2BE* MAP3K1 PIK3R1
ATM DNAH14 HRAS* MAP3K4 PTCH1

AURKA EGFR IDH1* MDM2 PTEN
AURKB ERBB2 IGF1R MDM4 RB1
BRAF ERBB3 IKBKB MET RET

BRCA1 ERBB4 IKBKE MTOR RPTOR
BRCA2 ESR1 INPP4B MYC RUNX1
CCND1 EZH2* INSR NCOA3 SMO
CCNE1 FGF19 JAK2 NCOR1 STK11
CDH1 FGFR1 JAK3 NCOR2 TP53
CDK4 FGFR2 JUN* NF1

Table 2: 79 Genes incorporated in the MammaSeqTM gene panel. 

* denotes genes with less than 3 amplicons, for which copy number changes were not 
reported

Table 2: Genes Incorporated in the MammaSeq Panel 
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CDK4 and CDK6, both of which can be targeted with FDA approved CDK4/6 inhibitors [74]. 

Additional genes unique to MammaSeq include common drivers, CCND1, MTOR, and FGFR4. 

Finally, MammaSeq covers 68 of 315 genes targeted by the larger pan cancer Foundation 

Medicine, FoundationOne panel. Figure 13 details the overlap in coverage between MammaSeq 

and above mentioned commercially available panels.  

2.3.2 Characterization of Genetic Variants detected by MammaSeq in a Solid Tumor 

Cohort 

To evaluate performance in mutation detection by the MammaSeq panel, sequencing was carried 

out on a cohort of 46 solid tumor samples, with a mean read depth of 2311X (Figure 14).  4970 

total variants (mean: 106, median: 82) were called across all patient samples. I removed identical 

genomic variants that were present in more than 10 samples as these were likely to be sequencing 

artifacts or common SNPs. Removing non-coding and synonymous variants yielded 1433 and 901 

variants, respectively. To filter out less common polymorphisms, I removed variants annotated in 

ExAC [65] or the 1000Genomes [66] databases in more than 1% of the population. I removed 

variants with an allele frequency above 90%, as these were likely germline. Finally, to focus on 

high confidence mutations, I removed variants with a strand bias outside of the range of 0.5-0.6, 

yielding a total of 592 protein coding mutations (mean 12.9, median 3, IQR 3) (Figure 1). 

Interestingly, as noted by the variation between the mean and median, the total number of 

mutations was skewed toward a subset of samples (Figure 1-top panel). 408 of the 592 mutations 

(69%) were found in just 4 of the 46 samples (Figure 15). These 4 samples are outliers, as they are 

all more than 1.5 times the IQR plus the median. 3 of these 4 samples with high mutational burden 

were of triple negative subtype, while the fourth was ER+/HER2+.  The most common mutated 

genes were TP53 (57%) and PIK3CA (43%). We also noted common mutations in ESR1 (21%), 
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Figure 1: Genetic alterations identified by the MammaSeq gene panel in a test cohort of 46 
breast cancers. 
Oncoprint depicting the distribution of somatic mutations, copy-number amplifications (absolute 
copy-number greater that 6) and deletions (absolute copy-number less than 1). 
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ATM (21%) and ERBB2 (17%).  

To examine changes in CNV, we established a baseline for pull down and amplification 

efficiency by performing MammaSeq on normal germline DNA from 14 samples (7 patients – 6 

additional). CNVkit [68] was used to pool the normal samples into single reference and then call 

CNV in the solid tumor cohort (Figure 1). CNV were identified in many common oncogenes 

including CCND1, MYC, FGFR1 and others. 2 of the 3 ERBB2+ samples (via clinical assay) 

showed CNV by MammaSeq. FGF19 and CCND1 were co-amplified in 9 of the 46 (20%) solid 

tumors. Both genes are located on 11q13, a band identified in GWAS as harboring variants, 

including amplifications, associated with ER+ breast cancers [75]. There wasn’t a correlation 

between mutational burden and copy number burden (Pearson correlation p-value = 0.7445). 

2.3.3 Clinical Utility of Genetic Variants Detected by MammaSeq 

To determine how many of the mutations have putative clinical utility, I utilized the 

OncoKB precision oncology knowledge database [76]. 25 of the genes in the MammaSeq panel 

(32% of the panel) harbor clinically actionable variants with supporting clinical evidence 

(OncoKB levels 1-3). In total, I identified 28 actionable variants (26 SNV and 2 ERBB2 

amplifications) that have supporting clinical evidence (level 1-3) and an additional 3 actionable 

variants supported by substantial research evidence (level 4) in the solid tumor cohort (Table 3). 

The 26 SNVs were distributed across 20 of the 46 cases (43%) (Figure 2). Consistent with the 

report detailing the development of the OncoKB database [36], the vast majority of actionable 

variants in breast cancer are annotated at level 3, indicating that variants have been used as 

biomarkers in clinical trials, however they are not FDA approved. In fact, the only level 1 

annotated variant in breast cancer is ERBB2 amplification.   
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2.3.4 Characterization of Genetic Variants detected by MammaSeq in cfDNA 

To examine the potential of MammaSeq to detect variants in cfDNA, we sequenced 14 

cfDNA samples isolated from 7 patients with metastatic disease (originally obtained by Rekha 

Gyanchandani a postdoc in the Lee lab). cfDNA samples were sequenced to a mean depth of 

1810X, while matched buffy coat gDNA was sequenced to a mean depth of 425X (Figure 15). We 

applied the same filtering pipeline to the cfDNA variants and solid tumor variants, except in the 

smaller cohort I removed all identical variants found in more than 4 samples, and lowered the 

minimum allele frequency to 1.0%. I identified a total of 43 somatic mutations across the 14 

cfDNA samples (mean: 3.1, median 1, IQR 1.75) (Figure 3A). Like the solid tumor cohort, a single 

draw from 1 patient (CF_28-Draw 1) harbored 13 of the 25 (58%) total mutations. Using the same 

definition, this sample is also an outlier. Similar to the solid tumor cohort, PIK3CA and ESR1 were 

among the most commonly mutated genes.  

Figure 2: Clinical actionability of MammaSeq identified somatic alterations. 
(A)Annotation levels, adapted from OncoKB (B) Samples were categorized based on the most 
actionable alteration. Specific alterations and associated drugs are depicted in Table 3. 
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Two of the identified somatic mutations (each identified in 2 draws from 1 patient) are 

annotated at level 3 in the OncoKB database, ESR1 - D538G and PIK3CA - H1047R (Figure 3A). 

The ESR1 mutation was identified in 2 separate blood draws from patient CF_28 taken 13 months 

apart. Interestingly, the FOXA1 – Y175C mutation was also identified in the same draws from 
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Figure 3: Genetic alterations identified in cfDNA from a test cohort of 7 patients with 
metastatic invasive ductal carcinoma. 
(A) Oncoprint of somatic mutations identified in 14 cfDNA samples. (B) Clinical timeline 
and mutant allele frequency of ESR1-D538G and FOXA1-Y175C mutations in serial blood 
draws from patient CF28. The timeline starts with diagnosis of metastasis and shows tumor 
marker assessments (CA 27.29 antigen line graph), mutant allele frequency (bar graphs), 
LLoD (dotted line), blood draws (syringe), and treatments received. Treatment abbreviations: 
AI (aromatase inhibitor), SERD (selective estrogen receptor degrader), Ev. (Everolimus), 
Antimb. (Antimetabolite), Platin (Platinum-based chemotherapy). 

Figure 3: Genetic alterations identified by MammaSeq in cfDNA from a test cohort of 7 
patients with metastatic invasive ductal carcinoma. 
(A)  Oncoprint of somatic mutations identified in 14 cfDNA samples. (B) Clinical timeline and 
mutant allele frequency of ESR1-D538G and FOXA1-Y175C mutations in serial blood draws 
from patient CF28. The timeline starts with diagnosis of metastasis and shows tumor marker 
assessments (CA 27.29 antigen line graph), mutant allele frequency (bar graphs), LLoD (dotted 
line), blood draws (syringe), and treatments received. Treatment abbreviations: AI (aromatase 
inhibitor), SERD (selective estrogen receptor degrader), Ev. (Everolimus), Antimb. 
(Antimetabolite), Platin (Platinum-based chemotherapy). 
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patient CF_28 (Figure 3B). The allele frequencies of these mutations strongly correlate with levels 

of cancer antigen 27-29 (CA-27.29), indicating that the mutation frequencies are likely an indicator 

of disease burden. Mutations identified in all three genes (ESR1, PIK3CA, and FOXA1) were 

independently validated using ddPCR (ddPCR validation done by Rekha Gyanchandani) (Figure 

16). 

2.3.5 RET mutations identified in the MammaSeq Cohort 

We identified 4 novel mutations in the kinase domain of RET, all of which are predicted to be 

pathogenic (Cravat CHASM p<0.05[77]); G825D, D842N, S891L, and M918I (Figure 4A). In 

fact, the mutations S891L and M918I affect residues that are known to cause multiple endocrine 

neoplasia (MEN2) type-2a (891) and type-2b (918)[78]. Studies have shown that mutations at 

these residues induce ligand and co-receptor independent activation of monomeric RET 

molecules[79]. G825D and D842N are novel mutations, unannotated in databases such as 

COSMIC[80], however the elevated allele frequencies (4.3 and 3.1% respectively) in metastatic 

samples suggest these mutations may be functioning as tumor drivers. 
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Figure 4: RET mutations identified in 3 independent cohorts of advanced breast tumors. 
(A) Lollipop plot (cBioPortal.org) of the 4 pathogenic variants identified in the MammaSeq 
cohort, 2 variants from previously published studies, and 1 variant from the patient matched 
whole exome sequencing cohort. (B)  ddPCR validation of the mutation allele frequency of 
RET R969Q in the primary tumor (left – 0.45%) and matched brain metastasis (right -6.6%). 
(WES study and ddPCR validation done by Ryan Hartmaier and Yijing Chen)

A

B

0 200 400 600 800 1000 1114 aa

0

5

# 
M

ut
at

io
ns

RET

Cadherin Pkinase_Tyr
P PP

MammaSeq Brain�WES Toy�et�al.

G8
25

D
D8

42
N

S8
91

L

M
91

8I

R9
69

Q

L8
51

H

Y7
52

ST
AT

2

Y9
05

G
RB

7�
���

Y1
06

2
SH

C1
�JAK-STAT

RAS-MAPK

Pi3K-AKT

Figure 4: RET mutations identified in 3 independent cohorts of advanced breast tumors. 
(A) Lollipop plot (cBioPortal.org) of the 4 pathogenic variants identified in the MammaSeq cohort, 
2 variants from previously published studies, and 1 variant from the patient matched whole exome 
sequencing cohort. (B)  ddPCR validation of the mutation allele frequency of RET R969Q in the 
primary tumor (left – 0.45%) and matched brain metastasis (right -6.6%). (WES study and ddPCR 
validation done by Ryan Hartmaier and Yijing Chen) 
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Sample ID Gene

Protein 
Sequence 
Change

Allele 
Frequency Level Drugs

MET_03 ERBB2 Amplification - 1

MET_33 ERBB2 Amplification - 1

MET_39 AKT1 E17K 0.25 3 AZD5363
MET_18 ERBB2 I654V 0.122222 3
MET_32 ERBB2 I654V 0.461731 3
MET_49 ERBB2 I654V 0.495495 3
MET_07 ESR1 D538G 0.477717 3
MET_21 ESR1 D538G 0.335884 3
MET_28 ESR1 D538G 0.454271 3
MET_27 ESR1 Y537S 0.376441 3
MET_22 PIK3CA E453K 0.444722 3
MET_10 PIK3CA E542K 0.106212 3
MET_21 PIK3CA E542K 0.501912 3
MET_41 PIK3CA E542K 0.073183 3
MET_49 PIK3CA E542K 0.467702 3
MET_08 PIK3CA E545K 0.204327 3
MET_34 PIK3CA E545K 0.0871914 3
MET_40 PIK3CA E545K 0.844344 3
MET_25 PIK3CA H1047R 0.341171 3
MET_29 PIK3CA H1047R 0.180681 3
MET_32 PIK3CA H1047R 0.2785 3
MET_33 PIK3CA H1047R 0.413998 3
MET_38 PIK3CA H1047R 0.384692 3
MET_44 PIK3CA H1047R 0.60054 3
MET_06 PIK3CA N345K 0.376571 3
MET_35 PIK3CA Q546R 0.435484 3
PR_26 BRAF G469A 0.52028 4 LTT462, BVD-523, KO-994

MET_34 KRAS G12D 0.074 4 LY3214996, KO-947, GDC-1014
MET_22 PTEN C136Y 0.756233 4 AZD6482 + Alpelisib

CF_28_Draw_1 ESR1 D538G 0.0746562 3
CF_28_Draw_5 ESR1 D538G 0.146853 3

CF_22_Draw_1 PIK3CA H1047R 0.320088 3

CF_22_Draw_2 PIK3CA H1047R 0.402402 3

Buparlisib, Serabelisib, Alpelisib + 
Fulvestrant, Copanlisib, GDC-0077, 

Alpelisib, Taselisib + Fulvestrant, 
Buparlisib + Fulvestrant, Taselisib

AZD9496, Fulvestrant

Table 3: Identified variants in annotated in OncoKB with corresponding targeted therapeutics.

Buparlisib, Serabelisib, Alpelisib + 
Fulvestrant, Copanlisib, GDC-0077, 

Alpelisib, Taselisib + Fulvestrant, 
Buparlisib + Fulvestrant, Taselisib

AZD9496, Fulvestrant

Neratinib

Lapatinib + Trastuzumab, 
Pertuzumab + Trastuzumab, Ado-
trastuzumab emtansine, Lapatinib, 

Trastuzumab

Table 3: Identified variants annotated in OncoKB with corresponding targeted therapeutics. 
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2.4 DISCUSSION 

Advances in the accuracy, cost, and analysis of NGS make it an ideal platform to develop 

diagnostics that can be used to precisely identify treatment options. MammaSeq was developed to 

comprehensively cover known driver mutation hotspots specifically in primary and metastatic 

breast cancer that would identify mutations with potential prognostic value. Typically, NGS 

diagnostics are reserved for late stage disease. As a result, the solid tumor cohort was significantly 

enriched for metastatic disease and markers of poor prognosis - triple negative subtype, late 

presentation, and therapy resistance.[61] 

Consistent with previous mutational studies, we report that a small subset of breast cancers 

harbor high mutational burden.[81] Across a variety of cancers, groups have demonstrated the 

correlation between the tumor mutation burden (TMB) and the efficacy of immunotherapy 

checkpoint inhibitors (reviewed here[82]). However, the ability to accurately depict tumor 

mutation burden is dependent on the percentage of the covered exome. Illumina have shown that 

the TruSight Tumor 170 panel (170 genes and 0.524 Mb) begins to skew the TMB upwards, when 

used on samples that contain relatively few mutations [83]. Similarly, a study by Chalmers et al. 

used a computational model to show that below 0.5Mb, TMB measurements are highly variable 

and unreliable [84]. The MammaSeq panel covers just 82,035bp (0.08Mb), and therefore likely 

cannot be used to calculate a mutational burden comparable to whole exome based studies. That 

being said, the stark difference in the total number of mutations identified in the subset of 4 tumor 

samples, suggests a high TMB, meaning these patients may be suited for immunotherapy.  

Liquid biopsies are beginning to be utilized clinically after numerous proof-of-principle 

studies have demonstrated the potential of circulating cell-free DNA (cfDNA) for prognostication, 

molecular profiling, and monitoring disease burden [64, 85-89]. We have demonstrated that the 
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MammaSeq panel can be used to identify mutations in cfDNA. For one patient (CF_28), we have 

cfDNA data from 5 blood draws taken over the course of 13 months. The sharp drop-off in the 

number of somatic mutations identified between the first and second draws co-occurs with a 

decrease in CA.27.29 levels, suggesting that the patient may have responded well to treatment, 

leading to disappearance of sensitive clones. In the later blood draws, we did not observe an 

increase in the total number of somatic mutations, but instead an increase in the allele frequency 

of ESR1-D538G and FOXA1-Y175C mutations, which may be caused by therapeutic selection of 

resistant clones.    

High-throughput genotyping of solid tumors and continual monitoring of disease burden 

through sequencing of cfDNA represent potential clinical applications for NGS technologies. It 

should be noted that targeted DNA sequencing panels such as MammaSeq are far less 

comprehensive than whole exome sequencing and they do not allow for evaluation of structural 

variants, which may lead to gene fusions that function as drivers [90]. Nevertheless, as focused 

panels represent cost-effective and useful alternatives to whole exome sequencing for targeted 

mutation detection. This data provides further evidence for the use of NGS diagnostics in the 

management of advanced breast cancers. 
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3.0 INVESTIGATING THE ROLE OF RET IN BREAST CANCER 

METASTASIS  

 

3.1 BACKGROUND 

The Lee-Oesterreich Lab recently reported in JAMA Onc that brain metastases undergo molecular 

evolution, with intrinsic subtype switching and a gain of ERBB2 amplification[91]. The lab has 

now completed an unbiased study using RNA exome sequencing of 45 patient-matched pairs of 

primary and metastatic breast cancers from 4 different recurrence sites (21 brain, 11 bone, 3 

gastrointestinal and 10 ovary). Nolan Priedigkeit performed all sample preparation and sequencing 

analysis pertaining to the brain cohort. He focused the analysis on metastatic expression gains, in 

clinically actionable kinases. RET was among the most recurrently upregulated kinases in the brain 

metastasis cohort, with expression gains (defined as the top 5% of genes after ranking by fold-

change) in 8 of the 21 pairs (38%) (Figure 5).  Notably, RET was not increased at other metastatic 

sites. 

 The ligands for RET, a transmembrane receptor tyrosine kinase (RTK), are the glial cell-

line derived neurotrophic factors (GDNFs), which are expressed almost exclusively in the central 

nervous system[92]. GDNFs bind to a family of co-receptors, termed glial cell-line derived 

neurotrophic factor receptors (GFRs)[93], and facilitate RET heterodimerization. Dimerization 

initiates auto-phosphorylation on several intracellular cysteine residues[94]. The phosphorylated 

residues then function as docking sites for PTB and SH2 domain-containing proteins such as 

STAT3, SRC, and GRB family proteins, among others, which further transduce the receptor 

signal[79, 95]. Functionally, RET is known to play a vital role in the development and homeostasis 

of neurons and aberrant activation of RET signaling is a known driver of other cancers such as 
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papillary thyroid cancer[96]. The facts that RET is increased only in breast cancer metastasis to 

brain, and GDNF is a brain specific growth factor, lead to the hypothesis that the overexpression 

of RET facilitates breast cancer brain metastasis due to the high levels of GDNF in the brain 

microenvironment. 

Figure 5: Recurrent RET expression gains in breast cancer brain metastasis. 
(A) Oncoprint of expression gains in clinically actionable kinases in a cohort of 21 pairs of patient 
matched primary-brain metastases. (B) Ladder plot of RET expression changes. (C) RET 10X IHC 
staining of a representative sample from A. (Figure curtesy of Nolan Priedigkeit) 
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The lab also recently completed whole exome sequencing on 12 pairs of patient matched 

primary and recurrent brain metastases (sample processing and sequencing done by Ryan 

Hartmaier PhD). Interestingly, we also identified a mutation in the kinase domain of RET 

(R969Q), that was highly enriched in the brain metastasis. ddPCR validation showed that the 

mutation was present in the primary tumor at an allele frequency of 0.45%, compared to 6.61% in 

the brain lesion, an increase of more than 14-fold (Figure 4B) (all mutation analysis and ddPCR 

validation done by Yijing Chen). A previous report also identified the RET mutation L851H, in a 

metastatic tumor, however no functional evaluation was done[97]. Aberrant activation of RET 

though translocations or point mutations has been shown to function as a driver of other cancer 

types; such as papillary thyroid cancer[96] and multiple endocrine neoplasia[98]. These alterations 

are believed to induce ligand independent receptor activity. If mutations in the kinase domain lead 

to GDNF independent RET signaling, it begs the question, why would the presence of GDNF in 

the brain microenvironment alter metastatic tropism? Given that we identified four other RET 

mutations in metastatic lesions in the MammaSeq cohort, and previous reports have identified RET 

mutations in non-brain metastatic lesions, it is possible that RET activation confers enhanced 

metastasis. This lead to the hypothesis that activating RET mutations enhances breast cancer 

metastasis, without specific metastatic tropism. Therefore, I hypothesized that the 

overexpression of RET facilitates breast cancer brain metastasis, due to the high levels of 

GDNF in the brain microenvironment, while RET activating mutations enhance metastatic 

capacity without specific metastatic tropism.  

The most well-known function of RET is to promote the survival of neurons of both the 

central and peripheral nervous systems. However, mice deficient in any of GDNF, GFRA1, or 

RET, all have a similar phenotype, in which enteric neurons fail to migrate into the gastrointestinal 
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tract (among other complications), leading to death shortly after birth[99]. In BrCa cells, RET has 

been shown to promote resistance to endocrine therapies[100]. In pancreatic cancer cells, RET-

GDNF signaling has been shown to promote the invasion of cells along the sciatic nerve[101]. 

Therefore, it is possible that active RET signaling in BrCa cells promotes survival and migration, 

leading to increased metastatic capacity. However, studies involving the effect of RET on BrCa 

metastasis are significantly lacking. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Tissue Culture 

All breast cancer cell lines used in this study were obtained from the American Tissue Culture 

Collection (ATCC). U251 glioblastoma cells that were used as a positive control for GDNF 

response, were a kind gift of Gary Kohanbash, John G. Rangos Sr. Research Center, Children’s 

Hospital of Pittsburgh of UPMC, Pittsburgh PA. MCF-7 cells stably expressing ZS-Green were 

made by Susan Farabaugh, PhD (Adrian Lee Lab). Cultures were maintained as follows: MCF-7 

and U251 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS) (Gibxo #26140-079), T47D in Roswell Park Memorial 

Institute (RPMI) 1640 Medium (Gibco #16600-082) supplemented with 10% FBS, and MDA-

MB-134 (MM-134) in a 1:1 mixture of DMEM with Leibovitz-15 (Gibco #11415-064) media 

supplemented with 10% FBS. For organotypic co-culture assays, dissection media consisted of 

Phenol-Red free DMEM supplemented with 20% FBS and antibiotic-antimycotic (Gibco 

#15240062). 
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3.2.2 Immunoblots 

Protein lysates were isolated using RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 

0.5% Nonidet P-40 (Sigma #21-3277), 0.5% NaDeoxycholate, 0.1% SDS), supplemented with 

Protease and Phosphatase Inhibitor (Thermo #78442), sonicated in a cup horn sonicator (for 5 

minutes in 30 second pulses), and centrifuged for 15 minutes at 14,00 rpm at 4qC. All samples 

were quantified for protein concentration using BCA Assay (Pierce #23225) and 25-50Pg (actual 

amount noted in figure legend) were run on an 8% SDS-PAGE gel. Protein was then transferred 

to a PVDF membrane (Millipore #IPFL00010) and incubated in Odyssey PBS Blocking buffer 

(LiCor #927-40000) for one hour and probed with antibodies. Primary antibodies used in this 

project are as follows: RET (Cell Signaling AB-3223), p-Tyr905-RET (Cell Signaling Ab-3221), 

p-Tyr1062-RET (Abcam ab51103), GFRD (Abcam Ab8026), p-Ser473-Akt (Cell Signaling Ab-

4060), p-(Thr202/Tyr204)-MAPK (Cell Signaling Ab-4377), and E-actin (Sigma #A5441). All 

primary antibodies were probed overnight at 4qC. After removing primary, membranes were 

washed with TBST (50mM Tris, 150mM NaCl, 0.1% Tween 20, pH 7.4) three times, for 15 

minutes each, and then incubated with secondary antibody at 1:20,000 at room temperature for 

1hr. Secondary antibodies used were anti-mouse 800CW (LiCor#925-32210) and anti-rabbit 

800CW (LiCor#925-32211). Membranes were again washed 3 times in TBST prior to imaging on 

Odyssey Infrared Imaging System (LiCor). For blots that were stripped and re-probed, 1X 

NewBlot Stripping buffer (LiCor #928-40032) was used per manufacturer’s protocol.  

3.2.3 Proliferation Assays 

GDNF (Sigma-Aldrich #G1777) was suspended in water to a concentration of 1Pg/PL, aliquoted, 

and stored at -80qC. MCF-7 and T47D cells were plated at 10,000 cells/well, MM-134 cells were 

plated at 20,000 cells/well, in 96-well 2D (Fisher #353072) or flat bottom ultra-low attachment 
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(ULA) (Corning #3473) plates. Cells were seeded in full serum media and allowed to adhere 

overnight. The next day, media was removed, the cells were washed twice with PBS, and cells 

were treated with cell line matched media supplemented 0.5% serum and GDNF at the marked 

concentration. Vehicle control wells were supplemented with water. Only the inner 60 wells (6x10) 

were used in experimental set up. Exterior wells were filled with an equal volume of PBS to 

prevent evaporation from the inner wells.   

3.2.4 Scratch Assays 

Matrigel (Corning #356234) was diluted in cell line specific, full serum media to a concentration 

of 100Pg/mL. 50PL of matrigel solution was added to each well, and incubated at 37qC for 1hr 

before cells were seeded on top of the Matrigel. MCF-7, T47D, and U25 cells were plated at 

150,000 cells/well, MM-134 cells were plated at 200,000 cells/well, in Essen ImageLock 96-well 

plates (Essen #4379). Cells were allowed to adhere overnight, before washing with PBS and 

creating the wound. Wounds were made with an Essen WoundMaker per the manufacture’s 

protocol. Cells were then washed again with PBS and media supplemented with FBS and GDNF 

were added to each well. Wound healing was then monitored using IncuCyte Zoom software for 

72hrs. At the end of each experiment, pictures from each well were manually curated to ensure 

that scratches were consistent, and results were not confounded by cells proliferating from within 

the wound. Outliers were manually removed.  

3.2.5 Transwell Assays 

The pDONR223-RET[102] donor vector (Addgene plasmid #23906), pLX302[103] destination 

vector (Addgene plasmid #25896), and BP Clonase II Reaction Mix (ThermoFisher Scientific 

#11789020) were used to generate a RET expression vector, where by expression was under the 

control of a cytomegalovirus (CMV) promoter and enhancer. One-Shot Stbl3 competent cells were 
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transformed via heat shock, according to the Addgene bacterial transformation protocol. E. Coli 

cells were grown on LB agar (Fisher BioReagents #9734) plates supplemented with 100Pg/mL 

Ampicillin (VWR Life Science #VRWV0339) at 37qC overnight. The next day, colonies were 

picked from the plate and cultured in 5mL of LB media (Fisher BioReagents #9735) supplemented 

with 50 Pg/mL Ampicillin, and cultured in a shaker at 37qC for approximately 8hrs. Media was 

then diluted into 500mL of LB media supplemented with Ampicillin, and cultured at 37qC 

overnight (~16hrs). Plasmid DNA was then isolated using a Plasmid Maxi Kit (Qiagen #12163). 

BrCa cells were transfected using Lipofectamine 3000 (Invitrogen #L3000015), per 

manufacturers protocol. 24hrs after transfection, cells were tripsonized, pelleted, washed with 

PBS, suspended in media supplemented with 0.5% serum, and seeded into the upper chamber of 

24-well 8.0Pm (pore size) transparent PET membrane inserts (BD Falcon #353097) at 300,000 

cells/well. The lower chambers of each well were filled with media supplemented with 0.5% 

serum, and 100ng/mL GDNF for experimental groups. Cells were cultured at 37qC for 72hrs, after 

which the upper side of each insert was cleaned with a cotton swab (Puritan #806-WC) and rinsed 

with ice-cold PBS. The inserts were then simultaneously fixed and stained with crystal violet 

(Sigma #C3886) in water plus 40% methanol for 20 minutes. The inserts were then washed with 

water and imaged. Finally, the staining intensity was measured using a Millipore colorimetric 

chemotaxis migration assay kit (Millipore #ECM508), according to the manufacture’s protocol. 

3.2.6 Organotypic Co-culture Assays 

Organotypic co-culture protocol was a modified version of previously published reports.[104, 105] 

4-week-old FBV/B6 mice were sacrificed by CO2 euthanasian. The brain and a kidney from each 

animal was quickly harvested, rinsed in ice-cold PBS, and transferred to ice-cold dissection media. 

The brains were then mounted to the vibratome stage using tissue adhesive (3M #1469SB) and 
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sectioned into 250Pm thick slices. The slices were then transferred to 0.4Pm polycarbonate 

membranes (Corning #3412) and cultured at 37qC overnight to allow cells to recover after the 

sectioning process. The next day, media was removed from the upper chamber of the membrane 

inserts. Roughly 100,000 MCF-7 cells (stably expressing ZS-Green) suspended in 10PL media 

were added directly on top of the slices. Inserts were incubated at 37qC for 20 minutes before fresh 

media was added back to the upper chamber of the inserts.  

 Fixation and staining protocol used was a modified version of previously published 

methods[106]. Briefly, slices were cultured at 37qC for 72hrs, washed with PBS, and then fixed in 

4% PFA overnight at 4qC. Slices were then washed with PBST three times, and incubated in 

permeabilization buffer (PBST + 0.1% Triton X-100 – Fisher BioReagents #BP151) for 24hrs at 

room temperature. Slices were again washed with PBST (3X) and then incubated with blocking 

buffer (4% Bovine Serum Albumin – Sigma #A9647) for 2hrs at room temperature. Slices were 

then incubated in primary antibody (GFAP – Millipore #MAB360) diluted in blocking buffer at 

1:400 at 4qC overnight, washed with PBST (3X), and incubated in secondary antibody (Alexa 

Fluor 546 Goat anti-Mouse – Life Technologies #A11018) at 4qC overnight. After washing, slices 

were mounted, upside down onto coverslips (Thermo - ProLong Diamond with Dapi #P36966), 

and left to dry overnight, at room temperature, in a dark sealed container.  

3.2.7 Statistics 

Technical replicates for all experiments are as described in figure legends. Heatmap in figure 6A 

was created in R, all other graphs and were made in GraphPad Prism. Dose responses were fitted 

with nonlinear four parameter functions to determine IC50 values. For transwell assays, 

significance was tested using a standard t-test. For growth curve assays, significance was tested 
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using one-way ANOVA test (Dunnett’s multiple comparisons test). All statistical tests for this 

study were done in GraphPad Prism.  

3.3 RESULTS 

3.3.1 Identification of Cell Line Models 

To identify cell line models for this project, we screened the cancer cell line 

encyclopedia[107](CCLE) for breast cancer cell lines that express both RET and the co-receptor 

GFRA1 (Protein: GFR𝛼). Further examining the cell lines at the protein level, we identified 2 cell 

line models that express both RET and co-receptor: ER-positive ductal carcinoma MCF-7, and 

ER-positive lobular carcinoma cell lines MDA-MB-134 (MM-134). An immunoblot of a panel of 

cell lines from within the lab correlated well with the RNA expression and indicated cell lines with 

both high and low expression (Figure 6). T47D cells, which do not express RET, but which do 

express minimal levels of the co-receptor GFR𝛼 were used as a negative control for GDNF 

signaling experiments.  

3.3.2 Breast Cancer Cells Have Functional GDNF-RET Signaling Pathway 

Previous studies have shown that breast cancers cells that express RET, including MCF-7 cells, 

will activate Pi3K/AKT and MAPK/ERK pathways upon GDNF treatment, indicating a functional 

signaling mechanism[108, 109]. However, in my hands I did not find that GDNF treatment (100 

ng/mL for 30min or 1hr) lead to a detectable enhancement of phosphorylation of the RET receptor 

at either Try-905 or at Try-1062 (Figure 17A & C). After 24hrs of serum starvation, GDNF 

treatment did not induce a noticeable change in AKT or MAPK phosphorylation (Figure 17B). 

This lack of consistency may be due to heterogeneity between strains of cell lines, or may be 

correctable with further experimental optimization. I also screened a panel of mutations, 

previously cloned by Yijing Chen, for RET and AKT activation (Figure 17). R969Q appeared to 
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show RET activation in the absence of GDNF treatment, while L851H did not respond to GDNF 

treatment. However, the positive control, M918T (known to cause MEN2A[98]), did not show 

evidence of elevated phosphorylation independent of GDNF. Overexpression of the wild-type 

receptor, in the absence of GDNF, led to apparent receptor activation (Figure 17C). While I have 

not yet determined if these results are repeatable, meaning we cannot draw any significant 

conclusions from this experiment, it is possible that overexpression of the receptor leads to 

increased independent of GDNF. Previous reports have suggested that RET can form heterodimers 

with other RTKs, including the HER family receptors and MET. One possible mechanism of  

 

Figure 6: Identifying RET positive cell line models. 
(A) Heatmap of expression data from CCLE. Arrows indicate cell lines used in subsequent studies. 
(B) Confirmation of RET and GFRDexpression in a panel of BrCa cell lines. 35Pg lysate was 
loaded into each lane of the gel. 
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Figure 7: GDNF treatment of RET positive MCF-7 and MM-134 cell lines does not induce 
detectable increases in p-RET, p-AKT, or p-MAPK. 
(A & B) Cells were cultured for 24hrs in the indicated serum concentration, and then stimulated 
with GDNF for 30 min. (C) MCF-7 cells were transfected with each indicated mutation (WT OE: 
wild-type overexpression), cultured overnight in media supplemented with 0.5% serum and 
stimulated with GDNF for 30 min.  
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GDNF independent RET activation is heterodimerization with another RTK that can induce 

transphosphorylation. 

3.3.3 GDNF has a Limited Effect on 2D Growth, yet Significantly Enhances Anchorage 

Independent Growth of RET Positive IDC MCF-7 Cells 

Given the classical function of RTKs to promote proliferation, I first sought to determine if GDNF-

RET signaling in breast cancer cells enhanced growth. Despite the lack of pathway activation data, 

GDNF treatment promoted proliferation in 2D in both MCF-7 and MM-134 cells, after 7 days in 

culture (MCF-7 experiments repeated three independent times, MM-134 experiments repeated two 

independent times) (Figure 7A). Importantly, experiments were performed in 0.5% serum and 

there was no significant effect until after 3 days in culture. This suggests that effect of GDNF may 

not be noticeable until serum resources become depleted. In ultra-low attachment (ULA) plates 

GDNF treatment had a profound effect on growth of MCF-7 cells, but not MM-134(Figure 7B).  

For MCF-7 cells, this result repeated (twice) in both flat-bottom and round-bottom ULA plates. 

MM-134s are a lobular carcinoma derived cell line that are known to have complete loss of E-

Cadherin expression[110], and known to grow well in the ULA environment[111].  

3.3.4 GDNF Enhances Migration of MCF-7 Cells and acts as a Chemoattractant when Ret 

is Overexpressed 

I next sought to determine if GDNF-RET signaling enhanced the migration of BrCa cells. Utilizing 

scratch assays, monitored with IncuCyte, I found that GDNF treatment increased cell migration in 

MCF-7 cells (effect seen in three independent experiments), but albeit in a limited and non-

significant manner (all treatment groups compared to no treatment control at day 3 by one-way 

ANOVA P > 0.07) (Figure 8). MM-134 cells, did not migrates in this setting, as the no treatment 

control only closed 5% of the wound after 3 days. While this was highly consistent across n=6 
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replicates, the small effect size of GDNF limits the interpretation and functional significance of 

this result. Representative images of wound closure for MCF-7 and MM-134 cells are shown in 

Figures 19 and 20 respectively.  

Figure 8: GDNF enhances growth of MCF7 cells in 2D and ULA environments. (A) 2D 
and (C) ULA growth curves of MCF-7 cells. (B) 2D and (D) ULA growth curves of MM-134 
cells. 2D plates were monitored using InCucyte Zoom software (n=6) and ULA plates were 
quantified using PrestoBlue cell viability assay (n=3). Bars represent mean ± SD. P<0.001 for 
each treatment compared to vehicle treated control at day 7 (one-way ANOVA).
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Figure 8: GDNF enhances growth of MCF-7 cells in 2D and ULA environments. 
(A) 2D and (C) ULA growth curves of MCF-7 cells. (B) 2D and (D) ULA growth curves of MM-
134 cells. 2D plates were monitored using IncuCyte Zoom software (n=6) and ULA plates were 
quantified using PrestoBlue cell viability assay (n=3). Bars represent mean r SD. P<0.001 for each 
treatment compared to vehicle treated control at day 7 (one-way ANOVA). 
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 Given that there are differences in proliferation rates upon GDNF treatment in MCF-7 cells 

(Figure 7), it is likely this effect reflects both proliferation than migration. In repeated proliferation 

assays with the MCF-7 and MM-134 cells, in the same experimental conditions, the effect on 

proliferation after 3 days is limited (From Figure 7 - at 3 days’ growth, only 20ng/ml vs 0ng/mL 

was statistically significant, one-way ANOVA P=0.019). The lack of significance in proliferation 

after 72hrs, combined with the dose dependence of the effect seen in the scratch assays, suggests 

that GDNF treatment has a small effect on migration in MCF-7 cells.  

A

C

B

Figure 9: GDNF enhances migration of RET positive MCF-7 and MM-134 cells, but not 
RET negative T47D cells. 
(A) MCF-7, (B) MM-134, and (C) T47D scratch assays monitored with IncuCyte zoom. Plots 
show the percentage of the original wound filled with invading cells at each time point. Points 
mark the mean ± SD of n=6 replicates. * P  < 0.005  
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Figure 9:GDNF enhances migrationo of RET-positive MCF-7 and MM-134 cells, but not 
RET-negative T47D cells. 
(A) MCF-7, (B) MM-134, and (C) T47D scratch assays monitored with IncuCyte zoom. Plots 
show the percentage of the original wound filled with invading cells at each time point. Points 
mark the mean r SD of n=6 replicates. * P < 0.005. 
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 To further explore the possibility that GDNF promotes metastasis through migration, I 

utilized transwell assays with GDNF as a chemoattractant. The U251 neuroblastoma cell line that 

has previously been shown to respond to GDNF treatment in transwell assays[112] was used as a 

positive control. Consistent with previously published results, MCF-7 cells did not have a strong 

migratory phenotype in this setting[111]. However, when RET was transiently overexpressed, 

increased staining in GDNF treated wells was apparent, compared to no treatment controls (Figure 

9). This visual increase did not lead to a significant increase in crystal violet absorbance (t-test P= 

0.258) in either of two independent repeats of the same experiment. Nonetheless, these results 

suggest that GDNF may act as a chemoattractant for cells highly expressing RET.  

3.3.5 GDNF Does not Elicit a Significant Cytoprotective Effect After Serum Starvation or 

After DNA Intercalating Chemotherapy Treatment 

After seeing that GDNF had a greater effect on proliferation, as serum resources became depleted, 

I next sought to determine if GDNF treatment has an effect on serum starvation induced apoptosis. 

Using either PrestoBlue, a measure of cellular metabolism, or Celltitre-Glo, a measure of total 

DNA content, GDNF treatment did not have a significant effect on cell survival after 7 days of 

serum starvation. The Celltitre-Glo readout indicates that after 7 days, total DNA levels were not 

dramatically reduced, indicating that serum starvation did not induce a significant level of 

apoptosis (Figure 21). Future experiments could utilize a live cell cleaved caspase-3 fluorescence 

dye to continuously monitor apoptosis over a longer duration. 

 As a more clinically relevant model to assess the cytoprotective effects of GDNF-RET 

signaling, I performed preliminary experiments utilizing the DNA intercalating chemotherapeutic 

agents Mitomycin-C and Doxorubicin to induce apoptosis (Figure 10). The IC50 values for the 
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treatment of MCF-7 cells with Mytomycin-C in the presence or absence of GDNF were 0.58 and 

3.21PM respectively, and 2.26 and 0.40PM for T47D cells respectively. The IC50 values for 

Doxorubicin in the presence and absence of 100ng/mL GDNF were 37.6 and 23.3PM respectively 

A

C

Figure 10: GDNF acts as a chemoattractant for MCF-7 cells transiently overexpressing 
RET in transwell assays. 
(A) Quantification of transwell migration assays with MCF-7 cells migrating towards 100 
ng/mL GDNF after transient overexpression of RET. Error bars indicate standard deviation of 
n=3 replicates. (B) Representative images of RET overexpression in wells with 100 ng/mL 
GDNF (Left) and with no chemoattractant (Right). (C) Western blot confirmation of transient 
RET overexpression. 
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Figure 10: GDNF acts as a chemoattractant for MCF-7 cells transiently overexpressing RET 
in transwell assays. 
(A) Quantification of transwell migration assays with MCF-7 cells migrating towards 100 ng/mL 
GDNF after transient overexpression of RET. Error bars indicate standard deviation of n=3 
replicates. (B) Representative images of RET overexpression in wells with 100 ng/mL GDNF 
(Left) and with no chemoattractant (Right). (C) Western blot confirmation of transient RET 
overexpression.  
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for MCF-7 cells, and 4.70 and 8.21PM for T47D cells respectively. At higher concentrations of 

drug, for both Mytomycin-C and Doxorubicin, the fluorescence ratio is lower in the presence of 

GDNF, however this an effect of low levels of proliferation induced by GDNF in the no treatment, 

normalization group.  

It must be noted that these experiments were not repeated multiple times, therefore I cannot 

estimate the variance in IC50 values, and cannot determine if the differences in IC50 values are 

statistically significant. I speculate, based on the variance in the data and the similarity between 

the dose response curves, that these differences are not significant for either drug in T47D cells, 

or MCF-7 cells  

3.3.6 Organotypic Co-Cultures, an in Vitro Method for Investigating Breast Cancer Cell 

Line Behavior in the Brain Microenvironment.  

Recently, groups have reported organotypic co-culture systems, which mimic an in vivo 

microenvironment of a specific organ in vitro. Valiente et al. utilized this method to visualize how 

breast cancer cells (MDA-MB-231) invade along brain capillaries[105] and Askoxylakis et al. 

utilized a similar method to determine the efficacy of a novel trastuzamab drug conjugate for the 

treatment of HER2 positive cell line explants (BT474 and MDA-MB-361) in brain slices[104]. To 

determine how MCF-7 cells grow in this environment, we stably infected MCF-7 cells with 

Zsgreen (from Susan Farabaugh, PhD) and grew them on slices of brain tissue harvested from 

FVB/Black 6 mice. When 15,000 cells were added on top of the slices, after 3 days of culture no 

Zsgreen labelled cells could be visualized (data not shown). However, when 150,000 cells were 
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added on top of the slices, large clusters of labelled cells could be seen growing on the slices 

(Figure 11. D-F).   

 One of the challenges of working with thick sections of tissue, is that the staining protocol 

needs to be thoroughly optimized for the given experiment. We stained slices for both DAPI and 

GFAP, to visualize cell nuclei and GDNF releasing glial cells (mainly astrocytes), however for the 

vast majority of the slices, no staining was seen. Near the edges of the slices a small number of the 

characteristic star shaped astrocytes could be identified (Figure 11G). Seeing as GFAP is an 

A B

Figure 11: GDNF alters drug response to DNA intercalating agents Mytomycin-C and 
Doxorubicin in MCF-7 cells, but not in T47D cells. 
(A) MCF-7 and (B) T47D dose response curves of treatment with Mytomycin-C (TOP) or 
Doxorubicin (BOTTOM), in the presence or absence of 100ng/mL GDNF. All points (mean ±
SD of n=3 replicates) were measured 3 days after treatment. 
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Figure 11: GDNF alters drug response to DNA intercalating agents Mytomycin-C and 
Doxorubicin in MCF-7 cells, but not T47D cells. 
(A) MCF-7 and (B) T47D dose response curves of treatment with Mytomycin-C (TOP) or 
Doxorubicin (BOTTOM), in the presence or absence of 100ng/mL GDNF. All points (mean r SD 
of n=3 replicates) were measured 3 days after treatment.  
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intracellular intermediate filament protein, and was only visible in a small number of cells, it is 

likely that the permeabilization step failed to effectively reach the center of the slices. Both 

standard fluorescence microscopy and con-focal microscopy failed to produce high resolution 

images of cells embedded inside the tissue slices.  
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A

D

Figure 12: Organotypic co-culture assays with Zsgreen labelled MCF-7 cells. 
(A) Schematic of assay set-up. Representative images of: (B) the sectioning process, (C) a 
250um slice after fixation, co-localized (D) green fluorescence and (E) phase-contrast images 
of a macro-tumor taken at 4x, and 60x images of (F) Zsgreen labelled cells and (G) red 
fluorescence GFAP staining
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Figure 12: Organotypic co-culture assays with Zsgreen labelled MCF-7 cells. 
(A) Schematic of assay set-up. Representative images of: (B) the sectioning process, (C) a 250um 
slice after fixation, co-localized (D) green fluorescence and (E) phase-contrast images of a macro-
tumor taken at 4x, and 60x images of (F) Zsgreen labelled cells and (G) red fluorescence GFAP 
staining. 
 



 

 45 

3.4 DISCUSSIONS 

Understanding the genetic drivers of metastatic tropism is paramount to developing novel targeted 

therapies for therapy resistant metastatic cancers. Recent studies from our lab have implicated RET 

in breast cancer metastasis, with a particular focus on brain metastasis. A few studies have 

highlighted the importance of GDNF-RET signaling in breast cancer endocrine therapy 

resistance[30, 109, 113], and others have investigated it in the context of pancreatic cancer 

perineural invasion[101]. To our knowledge, this is the first study examining RET with a specific 

focus on breast cancer brain metastasis.  

 We were unable to confirm previous reports that in breast cancer cells, specifically MCF-

7 cells, GDNF treatment induces RET, AKT, and MAPK phosphorylation. However, in functional 

growth and migration assays we see a clear functional effect of GDNF treatment. Most significant, 

is the effect of GDNF treatment on MCF-7 cell growth when plated in low density in ULA plates. 

The majority of the in vitro studies showed a clear trend, but not a significant effect. MCF-7 cells, 

while they do express RET, don’t have DNA level amplifications or abnormally high levels of 

RET mRNA. When RET was overexpressed, we were able to induce a migration phenotype not 

previously seen with MCF-7 cells in our lab. While the expression level seen in our RNA-Seq 

brain cohort and published in the CCLE (with the caveat of different technology platforms) are 

comparable, it is possible that utilizing a cell line with higher RET expression would improve 

results. Future studies would include expanding assays to include MM-134 and SUM-44 cells, cell 

lines that highly express RET, or stably overexpressing RET in an IDC cell line such as MCF-7s 

or BT-474s.  

 Interestingly, after 3 days of treatment with a high dose of GDNF (100ng/mL) and a low 

dose of Mytomycin-C (0.1PM), there was a stark difference in cell number between GDNF treated 
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and untreated groups (relative to untreated groups). Mytomycin-C is known to induce apoptosis in 

a cleaved caspase-3 (CC3) dependent manner[114] and inhibition of the Pi3K/Akt pathway has 

been shown to promote apoptosis through the activation of CC3. Therefore, it is possible that at 

low doses of Mytomycin-C, RET mediated activation of PI3K shifts the signaling axis more 

towards pro-survival/proliferative phenotypes, inducing a noticeable increase in cell number. A 

similar effect was observed with Doxorubicin treatment, only at a higher concentration of 1PM.  

 While the organotypic co-culture assays failed to produce granular results, if there are vast 

differences after RET knockdown or RET overexpression, this method can be an effective way to 

visualize difference in tumor formation in the brain microenvironment. The main advantage of this 

assay, as opposed to standard co-culture or in vitro treatment methods, is that the brain slices 

incorporate all types of neuronal cells and mimic the environment in 3D. Future studies, would 

include monitoring growth of RET positive BrCa cell lines on these brain slices, and the efficacy 

of targeted RET therapies in this setting. While these studies provide a strong basis for 

investigating RET mutations and the role of RET in BrCa brain metastasis, further work is needed 

before strong conclusions can be draw.  
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4.0 DISCUSSIONS 

The past decade has brought a targeted therapy revolution to cancer therapy. And while 5-year 

survival rates for primary disease continue to improve[38], breakthroughs in the treatment of 

metastatic disease have been few and far between. Understanding the biological mechanisms 

driving therapeutic resistance and metastatic tropism is an essential first step in identifying novel 

drug targets and developing new therapeutic strategies.   

 The rapid adoption of genetically stratified clinical trials for targeted therapies presents 

providers with a new challenge - offering patients a cost-effect approach to identify actionable 

mutations and match patients with targeted clinical trials. To help address this challenge, many 

groups have developed targeted mutation panels, that utilize massively parallel sequencing 

technologies[36, 37, 115, 116]. This allows oncologists to survey thousands of mutational hotspots 

in a single assay. Consistent with the UPMC study by Gurda et al.[63], a recent study by Pezo et 

al. published in 2017 found that relatively few (15%) metastatic breast cancer patients who 

undergo clinical sequencing enrolled in genotype-matched clinical trials, and as such there was 

virtually no survival benefit in undergoing the tests[59]. They suggested that more comprehensive 

sequencing efforts were needed. In chapter 2, we found that the limiting factor in matching patients 

with targeted therapies, was the lack of clinical evidence of mutation actionability. Despite finding 

nearly 600 protein coding mutations in carefully selected hotspot regions, only 26 mutations were 

considered clinically actionable by the OncoKB precision oncology database.  

 In this MammaSeq sequencing cohort, we identified 4 mutations in the kinase domain of 

RET. Interestingly, this gene also came up 2 recent studies done by previous members of the Lee 

Lab. RET was one of the most recurrently upregulated genes in a cohort of 21 patient-matched 

primary breast cancers and recurrent brain metastases. In a separate whole-exome sequencing 
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project, we found that another RET kinase domain mutation, R969Q, was enriched by more than 

12-fold in a metastatic brain lesion, compared to the patient matched primary tumor. These studies 

suggest that this gene was being selected for in the brain microenvironment. 

 While we were not able to confirm that the mutation was activating, we did find that GDNF 

treatment of RET positive breast cancer cell lines alters cell growth and migration. Specifically, 

GDNF treatment elevated proliferation of MCF-7 cells over the course of 7 days of treatment in a 

low serum setting, significantly elevated anchorage independent growth of MCF-7 cells, and 

enhanced migration of MCF-7 and MM-134 cells in scratch assays. When RET was transiently 

overexpressed in MCF-7 cells, GNDF acted as a chemoattractant, inducing migration in a 

noticeable, yet insignificant level.  

 Taken together, these studies demonstrate the clinical feasibility of using MammaSeq to 

detect clinically actionable mutations in breast cancer patients, and provide provisional data 

supporting the investigation of RET signaling as a potentially targetable mediator of breast cancer 

brain metastasis.  
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 APPENDIX A  

 

SUPPLEMENTAL FIGURES  

 

A1: TARGETED MUTATION DETECTION IN ADVANCED BREAST CANCER USING 

MAMMASEQ: SUPPLEMENTAL FIGURES 

 

 

Figure 13: MammaSeq panel gene coverage. 
Figure represents the percentage of protein coding base pairs in each gene covered by the 
MammaSeq panel. 



50 

Figure 14: Coverage overlap between MammaSeq and select commercially available panels 
used in breast cancer. 
Overlap of genes present in the MammaSeq panel and the (A) Foundation Medicine 
FoundationOne panel (B) Thermo Ion AmpliSeq Cancer Hotspot Panel (v2) (C) Qiagen GeneRead 
Human Breast Cancer Panel and the (D) Thermo Oncomine Breast cfDNA Assay. Overlap of the 
number of base pairs covered for the (E) Qiagen GeneRead and (F) Thermo Oncomine panels 
were calculated as these panel designs are publicly available.  
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Figure 15: All samples were sequenced to sufficient to depth for accurate variant calling. 
Mean sequencing read depth for (A) the 46 solid tumor cohort, (B) isolated mononuclear cells 
from the 14 cfDNA blood draws, and (C) the 14 cfDNA samples. 
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Figure 16: Tumor mutational Burden across all samples in the 46 solid tumor cohort. 
Figure represents the total number of protein coding mutations for each sample. 
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Figure 17: ddPCR validation of mutations identified by MammaSeq.
Figures represent the fluorescence intensity of each droplet (colored points represent droplets 
positive for the indicated fluorophore and grey points represent negative droplets) and 
calculated mutation allele frequencies for (A) ESR1-D538G, (B) FOXA1-Y175C, and (C)
PIK3CA-H1047R. (ddPCR done by Rekha Gyanchandani PhD)

Figure 17: ddPCR validation of mutations identified by MammaSeq. 
Figures represent the fluorescence intensity of each droplet (colored points represent droplets 
positive for the indicated fluorophore and grey points represent negative droplets) and calculated 
mutation allele frequencies for (A) ESR1-D538G, (B) FOXA1-Y175C, and (C) PIK3CA-H1047R. 
(ddPCR done by Rekha Gyanchandani PhD) 
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A2: INVESTIGATING THE ROLE OF RET IN BREAST CANCER METASTASIS 
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Figure 20: GDNFacts as achemoattractant for MCF-7 cells transiently overexpressing 
RET.
Figures show representative images from two independent repeats of the same experiment. 

100ng/mL GDNF No Chemoattractant

MCF-7 RET Overexpression

Figure 20: GDNF acts as a chemoattractant for MCF-7 cells transiently overexpressing RET. 
Figures show representative images from two independent repeats of the same experiment. 
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Figure 21: GDNF does not have a significant effect on cell number after 7 days of serum
starvation.
40,000 cells per well were plated in full serum containing media, allowed to adhere
overnight, and treated with GDNF containing serum-free media. Day 0 marks the beginning
of treatment. Figures show CellTitre-Glo quantification of cells at day 1 and day 7 after
treatment. Plots show mean ± SD of n=12 replicates.
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Figure 21: GDNF does not have a significant effect on cell number after 7 days of serum 
starvation. 
40,000 cells per well were plated in full serum containing media, allowed to adhere overnight, and 
treated with GDNF containing serum-free media. Day 0 marks the beginning of treatment. Figures 
show CellTitre-Glo quantification of cells at day 1 and day 7 after treatment. Plots show mean r 
SD of n=12 replicates.  
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Table 4: Clinical characteristics, treatment, and outcome data for all patients in MammaSeq cohorts.
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PR02 43 White IDC 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A - - - N/A N/A N/A N/A

PR11 42 Black IDC/IL
C 3 72 c3 c0 c0 2B p1C p0 N/A 1A - - - Dead 15 17 22

PR14 41 White IDC 3 17 c1C c0 c0 1A p1C p1 N/A 2A + + - Dead 19 19 46
PR19 49 White IDC N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A - - - Dead 0 0 0
PR24 51 White IDC 3 70 c2 c1 c0 2B p4 p3A N/A 3C + + + Dead 0 0 47
PR26 54 White IDC N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + + - Dead 0 0 0
PR31 54 White IDC 3 42 c2 c1 c0 2A p1B p1A N/A 2A + + - Dead 15 15 37
PR39 64 White IDC 2 60 c1C c1 c0 2A p3 p2A N/A 3A + + + Alive 3 5 54
PR43 65 White IDC 2 31 c2 c0 c0 2B p2 p2A N/A 3A + + - Dead 12 14 36
PR48 70 White IDC 3 N/A N/A N/A N/A N/A p4A p2A c0 3B + + - Dead 7 7 47
MET01 30 White IDC 3 046 c2 c1 c0 2B p2 p3A N/A 3C - - - Dead 16 16 26
MET03 39 White N/A 4 N/A c4D c0 c0 3B pIS p0 c0 0 - - + Alive 92 92 127
MET05 32 White IDC 3 065 c3 c3 c0 3C p3 p3 N/A 3C - - - Dead 8 8 40
MET06 31 White IDC 3 38 c2 c1A c0 2B p1B p1A c0 1 + - - Dead 13 13 66
MET07 36 White IDC 3 33 c2 c0 c1 4 p1C p1A p1 4 + - - Dead 0 0 55
MET08 36 White IDC 2 31 c2 c0 2A p2 p2A 3A + + - Dead 32 33 61
MET09 38 White IDC 3 80 c3 c1 c0 3A pIS p0 0 - - - Dead 15 15 20
MET10 37 White IDC 9 10 c1 c1 c0 2A p1 p1 2A + - - Dead 52 52 67
MET12 42 White IDC 3 20 c1C c1 c0 2B p1B p0 1A - - - Dead 12 13 42
MET13 42 White IDC 3 61 c3 c1 c0 3A p2 p2A 3A - - - Dead 20 21 29
MET15 - White N/A 9 999 N/A - - - Dead 0 0 0
MET16 37 White ILC 2 100 c3 c1 c0 3A p1 p2A 3A + - - Dead 82 84 138
MET17 - White IDC 9 999 N/A N/A N/A N/A Alive 0 0 0
MET18 45 White IDC 3 120 c3 c2 c1 4 p3 p1A p1 4 - - - Dead 0 0 25
MET20 47 White ILC 3 58 c3 c1 c1 4 pX pX N/A + + - Dead 0 0 25
MET21 35 White IDC 3 13 c1 c0 c0 1 p1C p0 c0 1 + + + Alive 32 33 221
MET22 36 White N/A 9 13 cX cX c0 99 p1C p0 1 - - - Dead 84 84 181
MET23 47 White Mix 3 35 c2 c1 c0 2B p1B p0 1A - - - Dead 25 25 63
MET25 42 White Mix 2 50 c1 c0 c0 1 p2 p1 c0 2B + + - Dead 123 125 163
MET27 49 White Mix 3 90 c3 c1 c0 3A p2 p3 c0 3C + + - Dead 28 28 68
MET28 38 White IDC 9 14 c1 c0 c0 1 p1C pX c0 N/A + + + Dead 63 64 213
MET29 54 White IDC 3 999 c4B c1 3B pX pX N/A - - - Dead 0 0 18
MET30 45 White IDC 9 60 c3 c1 c0 3A p1C p1 c0 2A + + - Dead 87 88 146
MET32 54 White IDC 3 34 c2 c1 c1 4 p2 p0 p1 4 + + - Alive 0 0 68
MET33 31 White IDC 9 999 c1 c0 c0 1 p1 p0 1 + - + Dead 274 274 348
MET34 45 White IDC 2 030 c2 c1 c0 2B p2 p0 c0 2A N/A N/A N/A Dead 42 43 201
MET35 48 White ILC 9 120 c4B c1 c0 3B p3 p1 c0 3A + + - Dead 135 136 170
MET36 58 White IDC 3 23 c2 c0 c0 2A pX pX N/A - - - Dead 15 16 41
MET37 60 White IDC 9 30 c2 cX c1 4 p2 p3A p1 4 - + - Dead 0 0 26
MET38 45 White ILC 9 42 c2 c0 c0 2A p2 p1B c0 2B + - - Dead 198 198 226
MET40 57 White IDC 2 28 cX cX cX 99 p2 p1A c0 2B - - - Dead 86 86 93
MET41 67 White ILC 9 2 c1A c0 c1 4 pX pX N/A + N/A N/A Alive 0 0 34
MET44 - White N/A 9 999 N/A - - - Dead 0 0 0
MET46 68 White IDC 2 18 c1C c0 c0 1A p1C p0 1A + - - Alive 4 6 40
MET47 69 White IDC 3 12 cX c0 c0 99 p1C p0 1A - - - Alive 19 19 22
MET49 71 White IDC 3 19 c2 c0 c0 2A p1C p0 1A + + - Dead 44 44 51
CF15 24 white IDC 2 997 3 1 0 3A 1A 1 0 2A + + N/A 1 79 79 138
CF20 53 white IDC 3 074 3 1 0 3A 2 1A 0 2B + + N/A 1 64 64 96
CF22 34 white IDC 2 025 N/A N/A N/A 99 N/A N/A N/A 99 + + N/A 1 0 0 0
CF23 54 white IDC 3 034 2 1 1 4 2 0 1 4 + N/A N/A 1 0 0 40
CF26 62 white IDC 9 013 1C 3 0 3B X X X 99 + N/A N/A 1 151 152 224
CF27 42 white IDC 3 074 3 3 1 4 1C 3 1 4 + + N/A 0 0 0 80
CF28 55 white IDC 2 018 1C 0 0 1 1C 1M 0 2A + + N/A 1 116 117 124

Table 4: Clinical characteristics, treatment, and outcome data for all patients in MammaSeq cohorts. 



 

 62 

 

 
 

 
  

 
Table 5: Sequence of primers for preamplification.  
 

 
 
 
 
 
 
 
 
Table 6: Sequence of ddPCR primers and probes.  
 

 
 
 
 
 
 

Mutation Forward primer Reverse primer 

ESR1-
D538G 

GCATGAAGTGCAAGAACGTG AAGTGGCTTTGGTCCGTCT 
 
 

FOXA1-
Y175C 

TGGATGGCCATGGTGATGAG AGACGTTCAAGCGCAGCTA 

Mutation Forward primer Reverse primer Mutant Probe WT probe Fluoresce
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HEX/FAM 
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Y175C 

TGGATGGCCATGGTGAT
GAG 

AGACGTTCAAGCGCAGC
TA 

CTACTCGTGCATCTCG CCTACTCGTACATCTCG 
 

FAM/VIC 
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