9 research outputs found

    SARS-CoV-2 viral load and shedding kinetics

    No full text
    SARS-CoV-2 viral load and detection of infectious virus in the respiratory tract are the two key parameters for estimating infectiousness. As shedding of infectious virus is required for onward transmission, understanding shedding characteristics is relevant for public health interventions. Viral shedding is influenced by biological characteristics of the virus, host factors and pre-existing immunity (previous infection or vaccination) of the infected individual. Although the process of human-to-human transmission is multifactorial, viral load substantially contributed to human-to-human transmission, with higher viral load posing a greater risk for onward transmission. Emerging SARS-CoV-2 variants of concern have further complicated the picture of virus shedding. As underlying immunity in the population through previous infection, vaccination or a combination of both has rapidly increased on a global scale after almost 3 years of the pandemic, viral shedding patterns have become more distinct from those of ancestral SARS-CoV-2. Understanding the factors and mechanisms that influence infectious virus shedding and the period during which individuals infected with SARS-CoV-2 are contagious is crucial to guide public health measures and limit transmission. Furthermore, diagnostic tools to demonstrate the presence of infectious virus from routine diagnostic specimens are needed

    Murine cytomegaloviruses m139 targets DDX3 to curtail interferon production and promote viral replication.

    No full text
    Cytomegaloviruses (CMV) infect many different cell types and tissues in their respective hosts. Monocytes and macrophages play an important role in CMV dissemination from the site of infection to target organs. Moreover, macrophages are specialized in pathogen sensing and respond to infection by secreting cytokines and interferons. In murine cytomegalovirus (MCMV), a model for human cytomegalovirus, several genes required for efficient replication in macrophages have been identified, but their specific functions remain poorly understood. Here we show that MCMV m139, a gene of the conserved US22 gene family, encodes a protein that interacts with the DEAD box helicase DDX3, a protein involved in pathogen sensing and interferon (IFN) induction, and the E3 ubiquitin ligase UBR5. DDX3 and UBR5 also participate in the transcription, processing, and translation of a subset of cellular mRNAs. We show that m139 inhibits DDX3-mediated IFN-α and IFN-β induction and is necessary for efficient viral replication in bone-marrow derived macrophages. In vivo, m139 is crucial for viral dissemination to local lymph nodes and to the salivary glands. An m139-deficient MCMV also replicated to lower titers in SVEC4-10 endothelial cells. This replication defect was not accompanied by increased IFN-β transcription, but was rescued by knockout of either DDX3 or UBR5. Moreover, m139 co-localized with DDX3 and UBR5 in viral replication compartments in the cell nucleus. These results suggest that m139 inhibits DDX3-mediated IFN production in macrophages and antagonizes DDX3 and UBR5-dependent functions related to RNA metabolism in endothelial cells

    Sequential infections with rhinovirus and influenza modulate the replicative capacity of SARS-CoV-2 in the upper respiratory tract

    No full text
    Although frequently reported since the beginning of the pandemic, questions remain regarding the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) interaction with circulating respiratory viruses in coinfected patients. We here investigated dual infections involving early-pandemic SARS-CoV-2 and the Alpha variant and three of the most prevalent respiratory viruses, rhinovirus (RV) and Influenza A and B viruses (IAV and IBV), in reconstituted respiratory airway epithelial cells cultured at air–liquid interface. We found that SARS-CoV-2 replication was impaired by primary, but not secondary, rhino- and influenza virus infection. In contrast, SARS-CoV-2 had no effect on the replication of these seasonal respiratory viruses. Inhibition of SARS-CoV-2 correlated better with immune response triggered by RV, IAV and IBV than the virus entry. Using neutralizing antibody against type I and III interferons, SARS-CoV-2 blockade in dual infections could be partly prevented. Altogether, these data suggested that SARS-CoV-2 interaction with seasonal respiratory viruses would be modulated by interferon induction and could impact SARS-CoV-2 epidemiology when circulation of other respiratory viruses is restored

    Clinical sensitivity and specificity of a high-throughput microfluidic nano-immunoassay combined with capillary blood microsampling for the identification of anti-SARS-CoV-2 Spike IgG serostatus

    No full text
    Objectives We evaluate the diagnostic performance of dried blood microsampling combined with a high-throughput microfluidic nano-immunoassay (NIA) for the identification of anti-SARS-CoV-2 Spike IgG seropositivity. Methods We conducted a serological study among 192 individuals with documented prior SARS-CoV-2 infection and 44 SARS-CoV-2 negative individuals. Participants with prior SARS-CoV-2 infection had a long interval of 11 months since their qRT-PCR positive test. Serum was obtained after venipuncture and tested with an automated electrochemiluminescence anti-SARS-CoV-2 S total Ig reference assay, a commercial ELISA anti-S1 IgG assay, and the index test NIA. In addition, 109 participants from the positive cohort and 44 participants from the negative cohort participated in capillary blood collection using three microsampling devices: Mitra, repurposed glucose test strips, and HemaXis. Samples were dried, shipped by regular mail, extracted, and measured with NIA. Results Using serum samples, we achieve a clinical sensitivity of 98·33% and specificity of 97·62% on NIA, affirming the high performance of NIA in participants 11 months post infection. Combining microsampling with NIA, we obtain a clinical sensitivity of 95·05% using Mitra, 61·11% using glucose test strips, 83·16% using HemaXis, and 91·49% for HemaXis after automated extraction, without any drop in specificity. Discussion High sensitivity and specificity was demonstrated when testing micro-volume capillary dried blood samples using NIA, which is expected to facilitate its use in large-scale studies using home-based sampling or samples collected in the field

    Clinical sensitivity and specificity of a high-throughput microfluidic nano-immunoassay combined with capillary blood microsampling for the identification of anti-SARS-CoV-2 Spike IgG serostatus.

    No full text
    ObjectivesWe evaluate the diagnostic performance of dried blood microsampling combined with a high-throughput microfluidic nano-immunoassay (NIA) for the identification of anti-SARS-CoV-2 Spike IgG seropositivity.MethodsWe conducted a serological study among 192 individuals with documented prior SARS-CoV-2 infection and 44 SARS-CoV-2 negative individuals. Participants with prior SARS-CoV-2 infection had a long interval of 11 months since their qRT-PCR positive test. Serum was obtained after venipuncture and tested with an automated electrochemiluminescence anti-SARS-CoV-2 S total Ig reference assay, a commercial ELISA anti-S1 IgG assay, and the index test NIA. In addition, 109 participants from the positive cohort and 44 participants from the negative cohort participated in capillary blood collection using three microsampling devices: Mitra, repurposed glucose test strips, and HemaXis. Samples were dried, shipped by regular mail, extracted, and measured with NIA.ResultsUsing serum samples, we achieve a clinical sensitivity of 98·33% and specificity of 97·62% on NIA, affirming the high performance of NIA in participants 11 months post infection. Combining microsampling with NIA, we obtain a clinical sensitivity of 95·05% using Mitra, 61·11% using glucose test strips, 83·16% using HemaXis, and 91·49% for HemaXis after automated extraction, without any drop in specificity.DiscussionHigh sensitivity and specificity was demonstrated when testing micro-volume capillary dried blood samples using NIA, which is expected to facilitate its use in large-scale studies using home-based sampling or samples collected in the field

    Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2

    No full text
    Infectious viral load (VL) expelled as droplets and aerosols by infected individuals partly determines transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RNA VL measured by qRT-PCR is only a weak proxy for infectiousness. Studies on the kinetics of infectious VL are important to understand the mechanisms behind the different transmissibility of SARS-CoV-2 variants and the effect of vaccination on transmission, which allows guidance of public health measures. In this study, we quantified infectious VL in individuals infected with SARS-CoV-2 during the first five symptomatic days by in vitro culturability assay in unvaccinated or vaccinated individuals infected with pre-variant of concern (pre-VOC) SARS-CoV-2, Delta or Omicron BA.1. Unvaccinated individuals infected with pre-VOC SARS-CoV-2 had lower infectious VL than Delta-infected unvaccinated individuals. Full vaccination (defined as >2 weeks after receipt of the second dose during the primary vaccination series) significantly reduced infectious VL for Delta breakthrough cases compared to unvaccinated individuals. For Omicron BA.1 breakthrough cases, reduced infectious VL was observed only in boosted but not in fully vaccinated individuals compared to unvaccinated individuals. In addition, infectious VL was lower in fully vaccinated Omicron BA.1-infected individuals compared to fully vaccinated Delta-infected individuals, suggesting that mechanisms other than increased infectious VL contribute to the high infectiousness of SARS-CoV-2 Omicron BA.1. Our findings indicate that vaccines may lower transmission risk and, therefore, have a public health benefit beyond the individual protection from severe disease

    Analytical Sensitivity of Eight Different SARS-CoV-2 Antigen-Detecting Rapid Tests for Omicron-BA.1 Variant

    No full text
    The emergence of each novel SARS-CoV-2 variant of concern (VOC) requires investigation of its potential impact on the performance of diagnostic tests in use, including antigen-detecting rapid diagnostic tests (Ag-RDTs). Although anecdotal reports have been circulating that the newly emerged Omicron-BA.1 variant is in principle detectable by Ag-RDTs, few data on sensitivity are available. We have performed (i) analytical sensitivity testing with cultured virus in eight Ag-RDTs and (ii) retrospective testing in duplicates with clinical samples from vaccinated individuals with Omicron-BA.1 (n = 59) or Delta (n = 54) breakthrough infection on seven Ag-RDTs. Overall, in our analytical study we have found heterogenicity between Ag-RDTs for detecting Omicron-BA.1. When using cultured virus, we observed a trend toward lower endpoint sensitivity for Omicron-BA.1 detection than for earlier circulating SARS-CoV-2 and the other VOCs. In our retrospective study, the detection of Delta and Omicron-BA.1 was assessed in a comparable set of stored clinical samples using seven Ag-RDTs. Four hundred ninety-seven of all 826 tests (60.17%) performed on Omicron-BA.1 samples were positive, compared to 489/756 (64.68%) for Delta samples. In the analytical study, the sensitivity for both Omicron-BA.1 and Delta between the Ag-RDTs was variable. All seven Ag-RDTs showed comparable sensitivities to detect Omicron-BA.1 and Delta in the retrospective study. IMPORTANCE: Sensitivity for detecting Omicron-BA.1 shows high heterogenicity between Ag-RDTs, necessitating a careful consideration when using these tests to guide infection prevention measures. Analytical and retrospective testing is a proxy and timely solution to generate rapid performance data, but it is not a replacement for clinical evaluations, which are urgently needed. Biological and technical reasons for detection failure by some Ag-RDTs need to be further investigated.</p

    Neutralization capacity of antibodies elicited through homologous or heterologous infection or vaccination against SARS-CoV-2 VOCs

    No full text
    Emerging SARS-CoV-2 variants raise questions about escape from previous immunity. As the population immunity to SARS-CoV-2 has become more complex due to prior infections with different variants, vaccinations or the combination of both, understanding the antigenic relationship between variants is needed. Here, we have assessed neutralizing capacity of 120 blood specimens from convalescent individuals infected with ancestral SARS-CoV-2, Alpha, Beta, Gamma or Delta, double vaccinated individuals and patients after breakthrough infections with Delta or Omicron-BA.1. Neutralization against seven authentic SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta and Omicron-BA.1) determined by plaque-reduction neutralization assay allowed us to map the antigenic relationship of SARS-CoV-2 variants. Highest neutralization titers were observed against the homologous variant. Antigenic cartography identified Zeta and Omicron-BA.1 as separate antigenic clusters. Substantial immune escape in vaccinated individuals was detected for Omicron-BA.1 but not Zeta. Combined infection/vaccination derived immunity results in less Omicron-BA.1 immune escape. Last, breakthrough infections with Omicron-BA.1 lead to broadly neutralizing sera
    corecore