18 research outputs found

    Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA) metabolism in skeletal muscle at birth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR) and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism.</p> <p>Methods</p> <p>Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits), ACS (acyl-CoA synthase), AMPK (AMP-activated protein kinase, alpha2 catalytic subunit), CPT1B (carnitine palmitoyltransferase-1 beta subunit), MCD (malonyl-CoA decarboxylase) in 14 sham and 8 IUGR pups.</p> <p>Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC.</p> <p>Results</p> <p>A significant down regulation of insulin receptor protein (p < 0.05) and reduced expression of ACS and ACCα mRNA (p < 0.05) were observed in skeletal muscle of IUGR newborns. Immunoblotting showed no significant change in ACCα content.</p> <p>Conclusion</p> <p>Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.</p

    Epigenetic Changes Predisposing to Type 2 Diabetes in Intrauterine Growth Retardation

    Get PDF
    Epidemiologic studies have demonstrated an association between intrauterine growth retardation and a greater risk of chronic disease, including coronary heart disease, hypertension, stroke, and type 2 diabetes in adulthood. An adverse intrauterine environment may affect both growth and development of the organism, permanently programming endocrine and metabolic functions. One of the mechanisms of programming is the epigenetic modification of gene promoters involved in the control of key metabolic pathways. The aim of this review is to provide an overview of the experimental evidence showing the effects of early exposure to suboptimal environment on epigenome. The knowledge of the epigenetic markers of programming may allow the identification of susceptible individuals and the design of targeted prevention strategies

    Exposure to Uteroplacental Insufficiency Reduces the Expression of Signal Transducer and Activator of Transcription 3 and Proopiomelanocortin in the Hypothalamus of Newborn Rats

    Get PDF
    IUGR has been linked to the development of type 2 diabetes. Recent data suggest that some of the molecular defects underlying type 2 diabetes reside in the CNS. Disruption of the signal transducer and activator of transcription 3 (STAT3) in the hypothalamic neurons expressing leptin receptor, results in severe obesity, hyperglycaemia, and hyperinsulinemia. Our aim was to investigate the expression of STAT3 and its downstream effector proopiomelanocortin (POMC) in IUGR rats obtained by uterine artery ligation. On day 19 of gestation, time-dated Sprague-Dawley pregnant rats were anesthetized, and both the uterine arteries were ligated. At birth, hypothalamus was dissected and processed to evaluate the expression of STAT3, its phosphorylated form, and POMC. STAT3 mRNA, STAT3 protein, phosphorylated STAT3, POW mRNA, and POMC protein were significantly reduced in IUGR versus sham animals (p < 0.0001. p < 0.05 and p < 0.001, p < 0.01, p < 0.01 respectively). No significant differences either in serum leptin concentrations or in hypothalamic leptin receptor expression were observed. Our results suggest that an abnormal intrauterine milieu call affect the hypothalamic expression of STAT3 and POW at birth. altering the hypothalamic signaling pathways that regulate the energy homeostasis. (Pediatr Res 66: 208-211, 2009

    Central Control of Glucose Homeostasis

    No full text

    Transcripts were measured by real-time RT-PCR using appropriate primers and normalized to 18S mRNA

    No full text
    Data are expressed as relative quantification . SHAM group (RQ = 1). Bars represent standard errors. *P < 0.05.<p><b>Copyright information:</b></p><p>Taken from "Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA) metabolism in skeletal muscle at birth"</p><p>http://www.cardiab.com/content/7/1/14</p><p>Cardiovascular Diabetology 2008;7():14-14.</p><p>Published online 18 May 2008</p><p>PMCID:PMC2396605.</p><p></p

    Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA) metabolism in skeletal muscle at birth-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA) metabolism in skeletal muscle at birth"</p><p>http://www.cardiab.com/content/7/1/14</p><p>Cardiovascular Diabetology 2008;7():14-14.</p><p>Published online 18 May 2008</p><p>PMCID:PMC2396605.</p><p></p

    Impact of uteroplacental insufficiency on ovarian follicular pool in the rat

    No full text
    Abstract Background A low oxygen supply to the fetus causes intrauterine growth restriction and can affect gonadal development of the offspring, having a potential impact on fertility. We investigated histology and gene expression in the postnatal rat ovary after fetal hypoxia induced by uterine artery ligation. Methods Sprague-Dawley rats underwent uterine artery ligation at day 19 of gestation. Offspring were sacrificed at 5, 20 and 40 days post-partum. Follicles were counted and classified in hematoxylin-eosin stained sections. Gene expression of 90 genes was analyzed by TaqMan® Low Density Array. Results A significantly lower number of total and primordial follicles was detected in 20 days post-partum intrauterine growth restricted animals. Follicle density was not different at 40 days post-partum, suggesting that compensatory mechanisms occurred during the pre-pubertal window. Uterine artery ligation modified the expression of 24 genes involved in different cellular functions, among which proliferation, apoptosis and metabolism. Conclusion Ovarian follicle pool was affected by fetal hypoxia in early life, but this effect did not persist in puberty. Genes involved in cellular processes were affected at all ages, potentially implying long-term genetic alterations. Further analyses are needed to elucidate later effects of fetal hypoxia on ovarian function and fertility

    The exposure to uteroplacental insufficiency is associated with activation of unfolded protein response in postnatal life

    No full text
    <div><p>Early life events are associated with the susceptibility to chronic diseases in adult life. Perturbations of endoplasmic reticulum (ER) homeostasis activate the unfolded protein response (UPR), which contributes to the development of metabolic alterations. Our aim was to evaluate liver UPR in an animal model of intrauterine growth restriction (IUGR). A significantly increased expression of X-box binding protein-1 spliced (XBP1s) mRNA (p<0.01), Endoplasmic Reticulum-localized DnaJ homologue (Erdj4) mRNA (p<0.05) and Bip/GRP78-glucose-regulated protein 78 (Bip) mRNA (p<0.05) was observed in the liver of IUGR rats at birth. Furthermore, the expression of gluconeogenesis genes and lipogenesis genes were significantly upregulated (p<0.05) in IUGR pups. At 105 d, IUGR male rats showed significantly reduced glucose tolerance (p<0.01). A significant decreased expression of XBP1s mRNA (p<0.01) and increased expression of double-stranded RNA-dependent protein kinase-like ER kinase (PERK) and Asparagine synthetase (ASNS) (p<0.05) was observed in the liver of IUGR male adult rats. Liver focal steatosis and periportal fibrosis were observed in IUGR rats. These findings show for the first time that fetal exposure to uteroplacental insufficiency is associated with the activation of hepatic UPR and suggest that UPR signaling may play a role in the metabolic risk.</p></div
    corecore