19 research outputs found

    Fundamental Principles in Bacterial Physiology - History, Recent progress, and the Future with Focus on Cell Size Control: A Review

    Full text link
    Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (Sections 1 to 3), we review the first `golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (Sections 4 to 7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, Section 4 presents the history and current progress of the `adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome `sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final Section 8, we conclude by discussing the remaining challenges for the future in the field.Comment: Published in Reports on Progress in Physics. (https://doi.org/10.1088/1361-6633/aaa628) 96 pages, 48 figures, 7 boxes, 715 reference

    Quantum Walk of Two Interacting Bosons

    Full text link
    We study the effect of interactions on the bosonic two-particle quantum walk and its corresponding spatial correlations. The combined effect of interactions and Hanbury-Brown Twiss interference results in unique spatial correlations which depend on the strength of the interaction, but not on its sign. The results are explained in light of the two-particle spectrum and the physics of attractively and repulsively bound pairs. We experimentally measure the weak interaction limit of these effects in nonlinear photonic lattices. Finally, we discuss an experimental approach to observe the strong interaction limit using single atoms in optical lattices.Comment: 4 pages, 5 figures. Comments wellcom

    Motional Broadening in Ensembles With Heavy-Tail Frequency Distribution

    Full text link
    We show that the spectrum of an ensemble of two-level systems can be broadened through `resetting' discrete fluctuations, in contrast to the well-known motional-narrowing effect. We establish that the condition for the onset of motional broadening is that the ensemble frequency distribution has heavy tails with a diverging first moment. We find that the asymptotic motional-broadened lineshape is a Lorentzian, and derive an expression for its width. We explain why motional broadening persists up to some fluctuation rate, even when there is a physical upper cutoff to the frequency distribution.Comment: 6 pages, 4 figure
    corecore