66 research outputs found

    Strategies to increase happiness and wellbeing among public health students, faculty and staff

    Get PDF
    BACKGROUND: Public health schools equip students with skills to promote and protect health, however, little is known about what is provided to support physical, mental and social wellbeing in academic public health. AIMS: To identify programs, interventions, strategies, and tools in medical and academic settings that could be applicable to supporting mental health and wellbeing of public health professionals, students, staff and faculty. METHOD: In November 2019 (updated in January 2022), 13 databases were searched: PubMed, 10 EBSCO databases(e.g., Academic Search Ultimate, APA PsycINFO, CINAHL Plus, Education Source, ERIC, Health Source: Nursing/Academic Edition, MEDLINE, SocINDEX), ProQuest Dissertations & Theses Global, and Web of Science. Inclusion criteria were randomized controlled trials, group interventions to support mental health curriculum, online tools, strategies, techniques, and programs of mindfulness, anxiety, depression, stress/distress, or burnout. Studies were limited to English and from 1998 to January 3, 2022. Websites for U.S. Schools of Public Health were searched. RESULTS: Out of 19,527 articles, 6,752 duplicates were removed. Following abstract and title screening, full-text articles will be screened for eligibility. The main themes from included studies will be shared. Preliminary findings show examples of activities to support well-being of public health professional students, staff, and faculty (e.g., providing free access to meditation apps, funding a dedicated wellness coordinator within the School). CONCLUSIONS: The literature on strategies to increase happiness and wellbeing among public health students, faculty, and staff is scarce and efforts to support physical mental, and social wellbeing for this community should be evaluated, and findings shared

    Practical large-scale spatio-temporal modeling of particulate matter concentrations

    Get PDF
    The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988--2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10PM_{10} for the full time period and PM2.5PM_{2.5} for a subset of the period. For the earlier part of the period, 1988--1998, few PM2.5PM_{2.5} monitors were operating, so we develop a simple extension to the model that represents PM2.5PM_{2.5} conditionally on PM10PM_{10} model predictions. In the epidemiological analysis, model predictions of PM10PM_{10} are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space--time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS204 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Accelerometer and GPS Data to Analyze Built Environments and Physical Activity

    Get PDF
    Purpose: Most built environment studies have quantified characteristics of the areas around participants' homes. However, the environmental exposures for physical activity (PA) are spatially dynamic rather than static. Thus, merged accelerometer and global positioning system (GPS) data were utilized to estimate associations between the built environment and PA among adults. Methods: Participants (N = 142) were recruited on trails in Massachusetts and wore an accelerometer and GPS unit for 1-4 days. Two binary outcomes were created: moderate-to-vigorous PA (MVPA vs. light PA-to-sedentary); and light-to-vigorous PA (LVPA vs. sedentary). Five built environment variables were created within 50-meter buffers around GPS points: population density, street density, land use mix (LUM), greenness, and walkability index. Generalized linear mixed models were fit to examine associations between environmental variables and both outcomes, adjusting for demographic covariates. Results: Overall, in the fully adjusted models, greenness was positively associated with MVPA and LVPA (odds ratios [ORs] = 1.15, 95% confidence interval [CI] = 1.03, 1.30 and 1.25, 95% CI = 1.12, 1.41, respectively). In contrast, street density and LUM were negatively associated with MVPA (ORs = 0.69, 95% CI = 0.67, 0.71 and 0.87, 95% CI = 0.78, 0.97, respectively) and LVPA (ORs = 0.79, 95% CI = 0.77, 0.81 and 0.81, 95% CI = 0.74, 0.90, respectively). Negative associations of population density and walkability with both outcomes reached statistical significance, yet the effect sizes were small. Conclusions: Concurrent monitoring of activity with accelerometers and GPS units allowed us to investigate relationships between objectively measured built environment around GPS points and minute-by-minute PA. Negative relationships between street density and LUM and PA contrast evidence from most built environment studies in adults. However, direct comparisons should be made with caution since most previous studies have focused on spatially fixed buffers around home locations, rather than the precise locations where PA occurs

    Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors

    Get PDF
    Background: Exposure to atmospheric particulate matter (PM) remains an important public health concern, although it remains difficult to quantify accurately across large geographic areas with sufficiently high spatial resolution. Recent epidemiologic analyses have demonstrated the importance of spatially- and temporally-resolved exposure estimates, which show larger PM-mediated health effects as compared to nearest monitor or county-specific ambient concentrations. Methods: We developed generalized additive mixed models that describe regional and small-scale spatial and temporal gradients (and corresponding uncertainties) in monthly mass concentrations of fine (PM2.5), inhalable (PM10), and coarse mode particle mass (PM2.5–10) for the conterminous United States (U.S.). These models expand our previously developed models for the Northeastern and Midwestern U.S. by virtue of their larger spatial domain, their inclusion of an additional 5 years of PM data to develop predictions through 2007, and their use of refined geographic covariates for population density and point-source PM emissions. Covariate selection and model validation were performed using 10-fold cross-validation (CV). Results: The PM2.5 models had high predictive accuracy (CV R2=0.77 for both 1988–1998 and 1999–2007). While model performance remained strong, the predictive ability of models for PM10 (CV R2=0.58 for both 1988–1998 and 1999–2007) and PM2.5–10 (CV R2=0.46 and 0.52 for 1988–1998 and 1999–2007, respectively) was somewhat lower. Regional variation was found in the effects of geographic and meteorological covariates. Models generally performed well in both urban and rural areas and across seasons, though predictive performance varied somewhat by region (CV R2=0.81, 0.81, 0.83, 0.72, 0.69, 0.50, and 0.60 for the Northeast, Midwest, Southeast, Southcentral, Southwest, Northwest, and Central Plains regions, respectively, for PM2.5 from 1999–2007). Conclusions: Our models provide estimates of monthly-average outdoor concentrations of PM2.5, PM10, and PM2.5–10 with high spatial resolution and low bias. Thus, these models are suitable for estimating chronic exposures of populations living in the conterminous U.S. from 1988 to 2007

    Evaluating geographic imputation approaches for zip code level data: an application to a study of pediatric diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in the study of place effects on health, facilitated in part by geographic information systems. Incomplete or missing address information reduces geocoding success. Several geographic imputation methods have been suggested to overcome this limitation. Accuracy evaluation of these methods can be focused at the level of individuals and at higher group-levels (e.g., spatial distribution).</p> <p>Methods</p> <p>We evaluated the accuracy of eight geo-imputation methods for address allocation from ZIP codes to census tracts at the individual and group level. The spatial apportioning approaches underlying the imputation methods included four fixed (deterministic) and four random (stochastic) allocation methods using land area, total population, population under age 20, and race/ethnicity as weighting factors. Data included more than 2,000 geocoded cases of diabetes mellitus among youth aged 0-19 in four U.S. regions. The imputed distribution of cases across tracts was compared to the true distribution using a chi-squared statistic.</p> <p>Results</p> <p>At the individual level, population-weighted (total or under age 20) fixed allocation showed the greatest level of accuracy, with correct census tract assignments averaging 30.01% across all regions, followed by the race/ethnicity-weighted random method (23.83%). The true distribution of cases across census tracts was that 58.2% of tracts exhibited no cases, 26.2% had one case, 9.5% had two cases, and less than 3% had three or more. This distribution was best captured by random allocation methods, with no significant differences (p-value > 0.90). However, significant differences in distributions based on fixed allocation methods were found (p-value < 0.0003).</p> <p>Conclusion</p> <p>Fixed imputation methods seemed to yield greatest accuracy at the individual level, suggesting use for studies on area-level environmental exposures. Fixed methods result in artificial clusters in single census tracts. For studies focusing on spatial distribution of disease, random methods seemed superior, as they most closely replicated the true spatial distribution. When selecting an imputation approach, researchers should consider carefully the study aims.</p

    Relationships Between the Built Environment and Walking and Weight Status Among Older Women in Three U.S. States

    Get PDF
    There are few studies of built environment associations with physical activity and weight status among older women in large geographic areas that use individual residential buffers to define environmental exposures. Among 23,434 women (70.0±6.9 years; range = 57-85) in 3 states, relationships between objective built environment variables and meeting physical activity recommendations via walking and weight status were examined. Differences in associations by population density and state were explored in stratified models. Population density (odds ratio (OR)=1.04 [1.02,1.07]), intersection density (ORs=1.18-1.28), and facility density (ORs=1.01-1.53) were positively associated with walking. Density of physical activity facilities was inversely associated with overweight/obesity (OR=0.69 [0.49, 0.96]). The strongest associations between facility density variables and both outcomes were found among women from higher population density areas. There was no clear pattern of differences in associations across states. Among older women, relationships between accessible facilities and walking may be most important in more densely populated settings
    corecore