1,142 research outputs found

    The mass and environmental dependence on the secular processes of AGN in terms of morphology, colour, and specific star-formation rate

    Full text link
    Galaxy mass and environment play a major role in the evolution of galaxies. In the transition from star-forming to quenched galaxies, Active galactic nuclei (AGN) have also a principal action. However, the connections between these three actors are still uncertain. In this work we investigate the effects of stellar mass and the large-scale environment (LSS), on the fraction of optical nuclear activity in a population of isolated galaxies, where AGN would not be triggered by recent galaxy interactions or mergers. As a continuation of a previous work, we focus on isolated galaxies to study the effect of stellar mass and the LSS in terms of morphology (early- and late-type), colour (red and blue), and specific star formation rate (quenched and star-forming). To explore where AGN activity is affected by the LSS we fix the stellar mass into low- and high-mass galaxies. We use the tidal strength parameter to quantify their effects. We found that AGN is strongly affected by stellar mass in 'active' galaxies (namely late-type, blue, and star-forming), however it has no influence for 'quiescent' galaxies (namely early-type, red, and quenched), at least for masses down to 1010 [M⊙]\rm 10^{10}\,[M_\odot]. In relation to the LSS, we found an increment on the fraction of SFN with denser LSS in low-mass star forming and red isolated galaxies. Regarding AGN, we find a clear increment of the fraction of AGN with denser environment in quenched and red isolated galaxies, independently of the stellar mass. AGN activity would be 'mass triggered' in 'active' isolated galaxies. This means that AGN is independent of the intrinsic property of the galaxies, but on its stellar mass. On the other hand, AGN would be 'environment triggered' in 'quiescent' isolated galaxies, where the fraction of AGN in terms of sSFR and colour increases from void regions to denser LSS, independently of its stellar mass.Comment: 14 pages, 9 figures (11 pages and 6 figures without appendix), accepted for publication in Astronomy & Astrophysic

    Steady-state signatures of radiation trapping by cold multilevel atoms

    Full text link
    In this paper, we use steady-state measurements to obtain evidence of radiation trapping in an optically thick a cloud of cold rubidium atoms. We investigate the fluorescence properties of our sample, pumped on opened transitions. The intensity of fluorescence exhibits a non trivial dependence on the optical thickness of the media. A simplified model, based on rate equations self-consistently coupled to a diffusive model of light transport, is used to explain the experimental observations in terms of incoherent radiation trapping on one spectral line. Measurements of atomic populations and fluorescence spectrum qualitatively agree with this interpretation.Comment: 8 pages, 5 figure

    Caracterización de nitratos alcalinos y alcalinoterreos por espectroscopia vibracional Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Get PDF
    [EN] Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1.387 cm~^ (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine the Lambert-Beer law slopes for each compound. These valúes are differents (bearing in mind experimental random errors), so we have could to affirm the nonexistence of solid solution between the nitrate and the alkaline halide médium. The L-B law obtained by us can be used for the Identification differentiation and quantitative analysis of these nitrates in solid phase, even if they are present in a very low concentration.[ES] Se ha realizado la asignación de los espectros infrarrojo (IR) de los nitratos alcalinos, sódico y potásico, y de los alcalinoterreos, magnésico y calcico, en estado sólido. Se ha visto la influencia del medio dispersante (haluro alcalino), utilizado en la preparación de la muestra sólida. El estudio cuantitativo de la absorbancia de la banda a 1.387 cm~^ (presente en los espectros IR de los cuatro nitratos en medio KBr) permite determinar las pendientes de la Ley de Lambert-Beer Se comprueba que dichas pendientes son diferentes lo que conduce a poder afirmar que no se produce disolución sólida entre el KBr y el nitrato alcalino o alcalinotérreo. La determinación de la ley de Lambert-Beer permite la identificación y el análisis cualitativo y cuantitativo por espectroscopia IR de estos nitratos cuando están presentes en bajas concentraciones en muestras sólidas.Peer reviewe

    Aperture-free star formation rate of SDSS star-forming galaxies

    Full text link
    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα\rm H\alpha flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα\rm H\alpha fluxes have been extinction-corrected using the Hα/Hβ\rm H\alpha/H\beta ratio free from aperture effects. The total SFR for ∼\sim210,000 SDSS star-forming galaxies has been derived applying pure empirical Hα\rm H\alpha and Hα/Hβ\rm H\alpha/H\beta aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is ∼\sim0.65dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR--M⋆\rm M_\star) has been obtained, together with its dependence on extinction and Hα\rm H\alpha equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005≤z≤0.22\rm 0.005 \leq z\leq 0.22. The SFR--M⋆\rm M_\star sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies

    The less significant role of large-scale environment than optical AGN in nearby, isolated elliptical galaxies

    Full text link
    The formation and evolution of elliptical galaxies in low-density environments are less understood than classical elliptical galaxies in high-density environments. Isolated galaxies are defined as galaxies without massive neighbors within scales of galaxy groups. The effect of the environment at several Mpc scales on their properties has been barely explored. Here we study the role of large-scale environment in some physical properties of 573 isolated elliptical galaxies out to z=0.08. We use three environmental estimators of the large-scale structure within a projected radius of 5 Mpc around isolated galaxies: the tidal strength parameter, the projected density eta_k, and the distance to the fifth nearest neighbor galaxy. We find 80% of galaxies at lower densities correspond to 'red and dead' elliptical galaxies. Blue and red galaxies do not tend to be located in different environments according to eta_k. Almost all the isolated ellipticals in the densest large-scale environments are red or quenched, where a third of them are low-mass galaxies. The percentage of isolated elliptical galaxies located in the AGN region of the BPT diagram is 64%. We have identified 33 blue, star-forming isolated ellipticals using both color and sSFR. Half of them are star-forming nuclei in the BPT diagram, which is 5% of the galaxies in this diagram. The large-scale environment is not playing the primary role to determine the color or sSFR of isolated elliptical galaxies. The large-scale environment seems to be negligible from a stellar mass scale around 10^10.6 Msun, probably because of the dominant presence of AGN at higher masses. For lower masses, the processes of cooling and infall of gas from large scales are very inefficient in ellipticals. AGN might also be an essential ingredient to keep most of the low-mass isolated elliptical galaxies quenched.Comment: 15 pages, 6 figures (10 pages and 4 figures without appendices). Accepted for publication in A&
    • …
    corecore