53 research outputs found

    Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients

    Get PDF
    On September 14–15, 2015, a meeting of clinicians and investigators in the fields of veterinary and human neuro-oncology, clinical trials, neuropathology, and drug development was convened at the National Institutes of Health campus in Bethesda, Maryland. This meeting served as the inaugural event launching a new consortium focused on improving the knowledge, development of, and access to naturally occurring canine brain cancer, specifically glioma, as a model for human disease. Within the meeting, a SWOT (strengths, weaknesses, opportunities, and threats) assessment was undertaken to critically evaluate the role that naturally occurring canine brain tumors could have in advancing this aspect of comparative oncology aimed at improving outcomes for dogs and human beings. A summary of this meeting and subsequent discussion are provided to inform the scientific and clinical community of the potential for this initiative. Canine and human comparisons represent an unprecedented opportunity to complement conventional brain tumor research paradigms, addressing a devastating disease for which innovative diagnostic and treatment strategies are clearly needed

    Impact of provider level, training and gender on the utilization of palliative care and hospice in neuro-oncology: a North-American survey

    No full text
    Specialized palliative care (PC) services have emerged to address symptoms and provide end-of-life management for patients with brain tumors. The utilization patterns of PC in neuro-oncology are unknown. A 22-question survey was distributed to participants of the society for neuro-oncology annual meeting 2012 (n = 4487). Nonparametric methods including Wilcoxon two-sample and Kruskal-Wallis tests were used to assess differences in responses. 239 (5.3 %) evaluable responses were received; 79 % of respondents were physicians, and 17 % were nurses or midlevel providers. Forty-seven percent were medical or neuro-oncologists, 31 % neurosurgeons and 11 % radiation oncologists. Forty percent had no formal training in PC, 57 % had some formal training and 3 % completed a PC fellowship. Seventy-nine percent practiced in an academic setting. Of the respondents, 57 % referred patients to PC when symptoms required treatment and 18 % at end of life. Only 51 % of all providers felt comfortable dealing with end-of-life issues and symptoms, while 33 % did not. Fifty-one percent preferred a service named Supportive Care rather than Palliative Care (MDs \u3e midlevel providers, p \u3c 0.001), and 32 % felt that patient expectations for ongoing therapy hindered their ability to make PC referrals. Female gender, formal training in neuro-oncology and PC, and medical versus surgical neuro-oncology training were significantly associated with hospice referral, comfort in dealing with end-of-life issues, and ease of access to PC services. Provider level, specialty, gender, training in PC and neuro-oncology have significant impact on the utilization of PC and hospice in neuro-oncology

    Impact of provider level, training and gender on the utilization of palliative care and hospice in neuro-oncology: a North-American survey

    No full text
    Specialized palliative care (PC) services have emerged to address symptoms and provide end-of-life management for patients with brain tumors. The utilization patterns of PC in neuro-oncology are unknown. A 22-question survey was distributed to participants of the society for neuro-oncology annual meeting 2012 (n = 4487). Nonparametric methods including Wilcoxon two-sample and Kruskal-Wallis tests were used to assess differences in responses. 239 (5.3 %) evaluable responses were received; 79 % of respondents were physicians, and 17 % were nurses or midlevel providers. Forty-seven percent were medical or neuro-oncologists, 31 % neurosurgeons and 11 % radiation oncologists. Forty percent had no formal training in PC, 57 % had some formal training and 3 % completed a PC fellowship. Seventy-nine percent practiced in an academic setting. Of the respondents, 57 % referred patients to PC when symptoms required treatment and 18 % at end of life. Only 51 % of all providers felt comfortable dealing with end-of-life issues and symptoms, while 33 % did not. Fifty-one percent preferred a service named Supportive Care rather than Palliative Care (MDs \u3e midlevel providers, p \u3c 0.001), and 32 % felt that patient expectations for ongoing therapy hindered their ability to make PC referrals. Female gender, formal training in neuro-oncology and PC, and medical versus surgical neuro-oncology training were significantly associated with hospice referral, comfort in dealing with end-of-life issues, and ease of access to PC services. Provider level, specialty, gender, training in PC and neuro-oncology have significant impact on the utilization of PC and hospice in neuro-oncology

    Correction: Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    No full text
    Glioblastoma (GBM) is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP) or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a platform for drug screening

    Classification of glioblastoma and metastasis for neuropathology intraoperative diagnosis:A multi-resolution textural approach to model the background

    No full text
    Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers

    Phase I trial of intracerebral convection-enhanced delivery of carboplatin for treatment of recurrent high-grade gliomas.

    No full text
    BackgroundCarboplatin is a potent cytoreductive agent for a variety of solid tumors. However, when delivered systemically, clinical efficacy for the treatment of high grade gliomas is poor due to limited penetration across the blood-brain barrier (BBB). Direct intracerebral (IC) convection-enhanced delivery (CED) of carboplatin has been used to bypass the BBB and successfully treat the F98 rat glioma. Based on these studies, we initiated a Phase I clinical trial.ObjectiveThis Phase I clinical trial was conducted to establish the maximum tolerated dose and define the toxicity profile of carboplatin delivered intracerebrally via convection enhanced delivery (CED) for patients with high grade glial neoplasms.MethodsCohorts of 3 patients with recurrent WHO grade III or IV gliomas were treated with escalating doses of CED carboplatin (1-4 μg in 54mL over 72 hours) delivered via catheters placed at the time of recurrent tumor resection. The primary outcome measure was determination of the maximum tolerated dose (MTD). Secondary outcome measures included overall survival (OS), progression-free survival (PFS), and radiographic correlation.ResultsA total of 10 patients have completed treatment with infusion doses of carboplatin of 1μg, 2μg, and 4μg. The total planned volume of infusion was 54mL for each patient. All patients had previously received surgery and chemoradiation. Histology at treatment include GBM (n = 9) and anaplastic oligodendroglioma (n = 1). Median KPS was 90 (range, 70 to 100) at time of treatment. Median PFS and OS were 2.1 and 9.6 months after completion of CED, respectively. A single adverse event possibly related to treatment was noted (generalized seizure).ConclusionsIC CED of carboplatin as a potential therapy for recurrent malignant glioma is feasible and safe at doses up to 4μg in 54mL over 72 hours. Further studies are needed to determine the maximum tolerated dose and potential efficacy

    Triethylammonium salt of a synthesized dicoumarol: Structural insight and human anti-glioblastoma activities

    No full text
    Glioblastoma multiforme (GBM) is the most common and primary brain tumor with poor prognosis. They are removed by following tedious and life threatening surgeries. GBM stem cells (GSCs) are the main source of tumor recurrence after surgery. Hence, drugs are designed to overcome the recurrent glioblastoma malignant cells. Currently used chemotherapies are not cost effective as well as bear resistance. New and effective chemotherapeutic compounds are developed to overcome the intrinsic and acquired resistance. Dicoumarol derivative 3,3′-[(4-methoxyphenyl)methanediyl]bis(4-hydroxy-2Hchromen-2-one) (HL) and its triethylammonium salt triethylammonium3-[(4-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]-2-oxo-2H-chromen-4-olate (L) were synthesized and characterized using spectral and analytical techniques. The deprotonated compound L was further studied structurally using single crystal analysis. Cytotoxic studies against human glioblastoma cells A172 and LN229 were investigated both dose and time dependently and compared with the cytotoxicity of normal human astrocytes (NHA). The IC50 value of HL against A172 was found to be lying within the range 2.68–0.95 μM whereas against LN229 the range was found to be 9.55–0.85 μM. Similarly, the compound L revealed range of 1.9–0.271 μM against A172 and 1.2–0.27 μM against LN229. Cell cycle arrest was observed in GBM cells treated with L compared to the control group, which suggested that L may trigger apoptosis in GBM cells according to cytotoxicity and flow cytometry results. The antioxidant activity of synthesized compounds was also investigated using DPPH free radicals
    • …
    corecore