5 research outputs found

    X-ray Multiple Diffraction On The Shallow Junction Of B In Si(0 0 1)

    No full text
    We apply X-ray multiple diffraction (XRMD) as a high resolution probe for analyzing the amorphous-crystalline interface (Si interstitial rich region) for different implantation energies and thermal treatment conditions during the formation of a shallow junction of B implanted in Si(0 0 1) crystals. Renninger scans (RS) (φ-scans) of the three sets of samples were measured using the (0 0 2) primary reflection, forbidden by the Si space group. Si(0 0 2) RS of as-implanted samples showed an extra peak coming from the Si interstitial atoms in the implanted region. This hybrid peak provides a very sensitive probe for analyzing the occurrence of interstitial Si atoms close to the amorphous-crystalline interface. We report its behavior as a function of the thermal treatment. The separation between the vacancy rich and the interstitial rich regions explains these results on the basis of the Si interstitial annihilation for shallow implantation. Samples with deep implantation are outside the detection range of the technique, in agreement with results for etched samples. © 2004 Elsevier B.V. All rights reserved.2281-2 SPEC. ISS.177182Morelhão, S.L., Cardoso, L.P., (1993) Solid State Commun., 88 (6), p. 465Morelhão, S.L., Avanci, L.H., Hayashi, M.A., Cardoso, L.P., Collins, S.P., (1998) Appl. Phys. Lett., 73 (15), p. 2194Avanci, L.H., Cardoso, L.P., Girdwood, S.E., Pugh, D., Sherwood, J.N., Roberts, K.J., (1998) Phys. Rev. Lett., 81 (24), p. 5426Avanci, L.H., Cardoso, L.P., Girdwood, S.E., Pugh, D., Roberts, K.J., Sasaki, J.M., Sherwood, J.N., (2000) Phys. Rev. B, 61 (10), p. 6507Avanci, L.H., Lai, X., Sasaki, J.M., Roberts, K.J., Cardoso, L.P., (2003) J. Appl. Crystallogr., 36, p. 1230Renninger, M., (1937) Z. Phys., 106, p. 141Chang, S.L., Multiple diffraction of X-rays in crystals (1984) Series in Solid-State Sciences, 50. , Springer-Verlag, Berlin, Heidelberg, New YorkMorelhão, S.L., Cardoso, L.P., (1996) J. Appl. Cryst., 29, p. 446Morelhão, S.L., Cardoso, L.P., Sasaki, J.M., De Carvalho, M.M.G., (1991) J. Appl. Phys., 70 (5), p. 2589Avanci, L.H., Hayashi, M.A., Cardoso, L.P., Morelhão, S.L., Riesz, F., Rakennus, K., Hakkarainen, T., (1998) J. Cryst. Growth, 188, p. 220Hayashi, M.A., Morelhão, S.L., Avanci, L.H., Cardoso, L.P., Sasaki, J.M., Kretly, L.C., Chang, S.L., (1997) Appl. Phys. Lett., 71 (18), p. 2614Larson, B.C., Barhorst, J.F., (1980) J. Appl. Phys., 51, p. 3181Morelhão, S.L., (2003) J. Synchrotron Rad., 10 (3), p. 236Klappe, J., Bársony, I., Liefiting, J.R., Ryan, T.W., (1993) Thin Solid Films, 235, p. 18

    Study Of The Magnetic Properties On Mn And As Co-implanted Gaas

    No full text
    The interest on diluted magnetic semiconductor (DMS), like GaMnAs, has increased during the last years due to potential applications, mainly on spintronic device. The magnetic anisotropy and the interacting effects between the magnetic nanostructures are fundamental topics to be studied. In this work we present some results on Mn and As co-implanted GaAs. Samples with three different implantation energies of Mn were prepared, keeping the As implantation energy fixed and the Mn and As dose of 2×1016 cm-2. Annealing was done using rapid thermal annealing (RTA) at 750 °C for 20 and 50 s. Using a superconducting quantum interference device (SQUID) and magnetic anisotropy values reported in the literature, we have obtained information about nanocluster size distribution. Our studies indicated that the nanocluster size distribution depends on the implantation parameters and the annealing time. Differently from previous studies reported in similar samples, we have observed room-temperature hysteresis in all samples, with coercive field values typical of nanoparticle systems. © 2008 Elsevier B.V. All rights reserved.32014e404e407Engel, B.N., (2005) IEEE Trans. Magn., 41, p. 132Serres, A., Respaud, M., Benassayag, G., (2003) Phys. E., 17 (1-4), p. 371Ziegler, J.F., Biersack, J.P., Littmark, U., (1985) The Stopping and Range of Ions in Solids, , Pergamon Press, New YorkDe Blois, R.W., Rodbell, D.S., (1963) Phys. Rev., 130 (4), p. 1347Dormann., J.L., Fiorani, D., Tronc, E., (1997) Adv. Chem. Phys., 98, p. 283De Biasi, E., Zysler, R.D., Ramos, C.A., Romero, H., (2002) Phys. B., 320, p. 20

    Sixge1-x Films And Heterojunctions Produced By Epitaxial Crystallization Of A-sixge1-x Alloys On Gaas

    No full text
    We studied the structural and electrical properties of crystallized a-SixGe1-x alloys with 0≤x≤1 on (100) GaAs substrates. Raman spectroscopy on laser crystallized films shows the Si-Si, Ge-Ge, and Si-Ge vibrations characteristic of crystalline SixGe 1-x alloys. The Raman polarization selection rules indicate that, while SixGe1-x films with x up to 25% are epitaxial, those with higher Si concentrations are polycrystalline with oriented grains. Heterojunctions formed by crystallizing a-Ge films on p-type GaAs exhibit Ohmic behavior. Ge/n-GaAs heterojunctions, in contrast, show rectification with current versus voltage characteristics compatible with the behavior of n-n structures. These heterojunctions are sensitive to light with wavelengths up to 1600 nm, thus demonstrating that they can be used as detectors in the spectral range for optical communications (1300-1550 nm). © 2004 Elsevier B.V. All rights reserved.338-3401 SPEC. ISS.197200Santos, P.V., Trampert, A., Dondeo, F., Comedi, D., Zhu, H.J., Ploog, K.H., Zanatta, A.R., Chambouleyron, I., (2001) J. Appl. Phys., 90, p. 2575Anderson, R.L., (1962) Solid State Electron., 5, p. 341Chang, L.L., (1965) Solid State Electron., 8, p. 721Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S., Albrecht, M., Strunk, H.P., (1999) J. Appl. Phys., 85, p. 1040Cardona, M., (1982) Light Scattering in Solids II, p. 153. , M. Cardona, & G. Güntherodt. Berlin: SpringerDondeo, F., Santos, P.V., Ramsteiner, M., Comedi, D., Pudenzi, M.A.A., Chambouleyron, I., (2002) Braz. J. Phys., 32, p. 376Renucci, M.A., Renucci, J.B., Cardona, M., (1971) Light Scattering in Solids, p. 326. , M. Balkanski. Paris: FlammarionLeycuras, A., Lee, M.G., (1994) Appl. Phys. Lett., 65, p. 2296Barnett, S.A., Ray, M.A., Lastras, A., Kramer, B., Greene, J.E., Raccah, P.M., Abels, L.L., (1982) Electron. Lett., 18, p. 89

    Surface Morphologies Of Be-doped Homoepitaxial Inp Films

    No full text
    We present here a study on the growth of Be-doped InP films by metalorganic molecular beam epitaxy, showing changes in morphology related to the presence of the dopant on the growing surface. The actual Be concentration in the films reaches (1-2) × 1019 cm-3 while the hole concentration saturates at a lower value (∼ 2 × 1018 cm-3 in our case). A negative lattice mismatch between film and substrate and non-uniform cathodoluminescence intensity are observed for samples grown at high growth temperatures and Be flux. The resulting changes in morphology suggest that the excess Be forms microclusters in the films grown at higher temperatures - due to the higher surface mobility, leading to the growth of oval defects. The surfaces of samples with no cap layer present a granulation which may be related to a reaction between Be and P at the growth temperature.1641-4409414Cotta, M.A., Hamm, R.A., Staley, T.W., Chu, S.N.G., Harriott, L.R., Panish, M.B., Temkin, H., (1993) Phys. Rev. Lett., 70, p. 4106Cotta, M.A., Hamm, R.A., Chu, S.N.G., Harriott, L.R., Temkin, H., (1994) J. Appl. Phys., 75, p. 630Brasil, M.J.S.P., Bernussi, A.A., Cotta, M.A., Marquezini, M.V., Brum, J.A., Hamm, R.A., Chu, S.N.G., Temkin, H., (1994) Appl. Phys. Lett., 65, p. 857Schwoebel, R.L., Shipsey, E.J., (1966) J. Appl. Phys., 37, p. 3682Erlich, G., Hudda, F.G., (1966) J. Chem. Phys., 44, p. 1039Fink, H.-W., Erlich, G., (1984) Surf. Sci., 14, p. 125Cotta, M.A., Hamm, R.A., Chu, S.N.G., Hull, R., Harriott, L.R., Temkin, H., (1995) Mater. Sci. Eng. B, 30, p. 137Cohen, P.I., (1994) Workshop on Critical Issues in Epitaxy, , June 22-24, Boulder, CO, USADäweritz, L., Hagenstein, K., Schützendübe, P., (1993) J. Vac. Sci. Technol. A, 11, p. 1802Ilegems, M., (1977) J. Appl. Phys., 48, p. 1278Hamm, R.A., Panish, M.B., Nottenburg, R.N., Chen, Y.K., Humphrey, D.A., (1989) Appl. Phys. Lett., 54, p. 2586Uchida, T.K., Uchida, T., Yokouchi, N., Koyama, F., Iga, K., (1990) Jpn. J. Appl. Phys., 29, pp. L2146Uchida, T.K., Uchida, T., Mise, K., Koyama, F., Iga, K., (1990) J. Crystal Growth, 105, p. 366Donnelly, J.P., Armiento, C.A., (1979) Appl. Phys. Lett., 34, p. 96Tsang, W.T., Choa, F.S., Wu, M.C., Chen, Y.K., Sergent, A.M., Sciortino P., Jr., (1991) Appl. Phys. Lett., 58, p. 2610Uchida, T., Yokouchi, N., Miyamoto, T., Koyama, F., Iga, K., (1993) J. Crystal Growth, 129, p. 275Tsang, W.T., Tell, B., Ditzenberger, J.A., Dayem, A.H., (1986) J. Appl. Phys., 60, p. 4182Panish, M.B., Hamm, R.A., Ritter, D., Luftman, H.S., Cotell, C.M., (1991) J. Crystal Growth, 112, p. 343Hultgren, R., Orr, R.L., Anderson, P.D., Kelley, K.K., (1963) Thermodynamic Properties of Metals and Alloys, pp. 46-49. , Wiley, New YorkBenchimol, J.L., Alaoui, F., Gao, Y., Le Roux, G., Rao, E.V.K., Alexandre, F., (1990) J. Crystal Growth, 105, p. 135Zehner, D.M., Barbulesco, N., Jenkins, L.H., (1974) Surf. Sci., 34, p. 385Cotta, M.A., Hamm, R.A., Chu, S.N.G., Harriott, L.R., Temkin, H., (1995) Appl. Phys. Lett., 66, p. 2358Gilmer, G.H., Jackson, K.A., (1977) Crystal Growth and Materials, p. 101. , Eds. E. Kaldis and H.J. Scheel North-Holland, AmsterdamOrme, C., Johnson, M.D., Leung, K.T., Orr, B.G., (1995) Mater. Sci. Eng. B, 30, p. 143Ritter, D., Hamm, R.A., Feygenson, A., Panish, M.B., Chandrasekhar, S., (1991) Appl. Phys. Lett., 59, p. 3431Yacobi, B.G., Holt, D.B., (1986) J. Appl. Phys., 59, pp. R

    Ferromagnetic Nanoclusters Formed By Mn Implantation In Gaas

    No full text
    Ferromagnetic clusters were incorporated into GaAs samples by Mn implantation and subsequent annealing. The composition and structural properties of the Mn-based nanoclusters formed at the surface and buried into the GaAs sample were analyzed by x-ray and microscopic techniques. Our measurements indicate the presence of buried MnAs nanoclusters with a structural phase transition around 40 °C, in accord with the first-order magneto-structural phase transition of bulk MnAs. We discuss the structural behavior of these nanoclusters during their formation and phase transition, which is an important point for technological applications. © 2005 American Institute of Physics.86713Prinz, G.A., (1990) Science, 250, p. 1092Prinz, G.A., (1995) Phys. Today, 48, p. 58Shi, J., Kikkawa, J.M., Proksch, R., Schaeffer, T., Awschalom, D.D., Medeiros-Ribeiro, G., Petroff, P.M., (1995) Nature (London), 377, p. 707Shi, J., Kikkawa, J.M., Awschalom, D.D., Medeiros-Ribeiro, G., Petroff, P.M., Babcock, K., (1996) J. Appl. Phys., 79, p. 5296Chen, C., Cai, M., Wang, X., Xu, S., Zhang, M., Ding, X., Sun, Y., (2000) J. Appl. Phys., 87, p. 9. , 0021-8979 10.1063/1.371959Chen, C., Cai, M., Wang, X., Xu, S., Zhang, M., Ding, X., Sun, Y., (2000) J. Appl. Phys., 87, p. 5636Willis, B.T.M., Rooksby, H.P., (1954) Proc. Phys. Soc. London, Sect. B, 67, p. 290Wilson, R.H., Kasper, J.S., (1964) Acta Crystallogr., 17, p. 95Zhang, J.P., Cheetham, A.K., Sun, K., Wu, J.S., Kuo, K.H., Shi, J., Awschalom, D.D., (1997) Appl. Phys. Lett., 71, p. 143Serres, A., Benassayag, G., Respaud, M., Armand, C., Pesant, J.-C., Mari, A., Liliental-Weber, Z., Claverie, A., (2003) Mater. Sci. Eng., B, 101, p. 119. , 0921-5107 10.1016/S0921-5107(02)00676-1Serres, A., Respaud, M., Benassayag, G., Armand, C., Pesant, J.-C., Mari, A., Liliental-Weber, Z., Claverie, A., (2003) Physica E (Amsterdam), 17, p. 371Kaganer, V.M., Jenichen, B., Schippan, F., Braun, W., Däweritz, L., Ploog, K.H., (2000) Phys. Rev. Lett., 85, p. 341Kaganer, V.M., Jenichen, B., Schippan, F., Braun, W., Däweritz, L., Ploog, K.H., (2002) Phys. Rev. B, 66, p. 045305Iikawa, F., Santos, P.V., Kästner, M., Schippan, F., Däweritz, L., (2002) Phys. Rev. B, 65, p. 205328Landoldt-Börnstein, New Series, III17a, 23
    corecore