5 research outputs found

    Spatio-temporal coherent control of thermal excitations in solids

    Full text link
    X-ray reflectivity (XRR) measurements of femtosecond laser-induced transient gratings are applied to demonstrate the spatio-temporal coherent control of thermally induced surface deformations on ultrafast timescales. Using gracing incidence X-ray diffraction we unambiguously measure the amplitude of transient surface deformations with sub-\AA{} resolution. Understanding the dynamics of femtosecond TG excitations in terms of superposition of acoustic and thermal gratings makes it possible to develop new ways of coherent control in X-ray diffraction experiments. Being the dominant source of TG signal, the long-living thermal grating with spatial period Λ\Lambda can be canceled by a second, time-delayed TG excitation shifted by Λ/2\Lambda/2. The ultimate speed limits of such an ultrafast X-ray shutter are inferred from the detailed analysis of thermal and acoustic dynamics in TG experiments

    Accelerating the laser-induced phase transition in nanostructured FeRh via plasmonic absorption

    Full text link
    By ultrafast x-ray diffraction we show that the laser-induced magnetostructural phase transition in FeRh nanoislands proceeds faster and more complete than in continuous films. We observe an intrinsic 8 ps timescale for nucleation of ferromagnetic (FM) domains in both types of samples. For the continuous film, the substrate-near regions, which are not directly exposed to light, are only slowly transformed to the FM state by domain wall motion following heat transport. In contrast, numerical modeling of the plasmonic absorption in the investigated nanostructure reveals a strong contribution near the FeRh/MgO interface. On average, the absorption is larger and more homogeneous in the nanoislands, enabling the phase transition throughout the entire volume at the intrinsic nucleation timescale

    Spin stress contribution to the lattice dynamics of FePt

    Get PDF
    Invar-behavior occurring in many magnetic materials has long been of interest to materials science. Here, we show not only invar behavior of a continuous film of FePt but also even negative thermal expansion of FePt nanograins upon equilibrium heating. Yet, both samples exhibit pronounced transient expansion upon laser heating in femtosecond x-ray diffraction experiments. We show that the granular microstructure is essential to support the contractive out-of-plane stresses originating from in-plane expansion via the Poisson effect that add to the uniaxial contractive stress driven by spin disorder. We prove the spin contribution by saturating the magnetic excitations with a first laser pulse and then detecting the purely expansive response to a second pulse. The contractive spin stress is reestablished on the same 100-ps time scale that we observe for the recovery of the ferromagnetic order. Finite-element modeling of the mechanical response of FePt nanosystems confirms the morphology dependence of the dynamics

    Towards shaping picosecond strain pulses via magnetostrictive transducers

    No full text
    Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic–antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zero-field response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses
    corecore