38 research outputs found

    First Results From Nanoindentation of Vapor Diffused Nb3Sn Films on Nb

    Full text link
    The mechanical vulnerability of the Nb3Sn-coated cavities is identified as one of the significant technical hurdles toward deploying them in practical accelerator applications in the not-so-distant future. It is crucial to characterize the material's mechanical properties in ways to address such vulnerability. Nanoindentation is a widely used technique for measuring the mechanical properties of thin films that involves indenting the film with a small diamond tip and measuring the force-displacement response to calculate the film's elastic modulus, hardness, and other mechanical properties. The nanoindentation analysis was performed on multiple vapor-diffused Nb3Sn samples coated at Jefferson Lab and Fermilab coating facilities for the first time. This contribution will discuss the first results obtained from the nanoindentation of Nb3Sn-coated Nb samples prepared via the Sn vapor diffusion technique.Comment: 21st Intl Conf Radio Frequency Superconductivity (SRF 2023

    Participatory mapping and collaborative action for inclusive and sustainable mountain landscape development in Far West Nepal

    Get PDF
    Nepal is one of the world’s most vulnerable countries to the impacts of climate change due to its high-relief topography, heavy monsoon rainfall, and weak governance. Landslides are common across almost all Nepal’s vast Himalaya mountains, of which the Far Western region suffers most, and climate change, coupled with severe under-development is expected to exacerbate the situation. Deficiency in spatial data and information seriously hinder the design and effective implementation of development plans, especially in the least developed areas, such as Seti River Basin in Far Western Nepal, where landslides constantly devastate landscapes and communities. We adopted a participatory mapping process with emerging collaborative digital mapping techniques to tackle the problem of critical information gaps, especially spatial risk information at local levels which compromise efforts for sustainable landscape planning and uses in disaster prone regions. In short, participatory here refers to working with local stakeholders and collaborative refers to crowdsourced map information with citizens and professionals. Engaging a wide range of stakeholders and non-stakeholder citizens in this integrated mapping processes eventually structure human capital at local scales with skills and knowledge on maps and mapping techniques. Also, this approach increases spatial knowledge and their uses in development planning at the local level and eventually increases landscape resilience through improved information management. We will further discuss how this integrated approach may provide an effective link between planning, designing, and implementing development plans amid fast policy and environmental changes and implications for communities in the developing world, especially in the context of climate change and its cascading effects

    Multi-metallic conduction cooled superconducting radio-frequency cavity with high thermal stability

    Get PDF
    Superconducting radio-frequency cavities are commonly used in modern particle accelerators for applied and fundamental research. Such cavities are typically made of high-purity, bulk Nb and are cooled by a liquid helium bath at a temperature of ~2 K. The size, cost and complexity of operating a particle accelerator with a liquid helium refrigerator makes the current cavity technology not favorable for use in industrial-type accelerators. We developed a multi-metallic 1.495~GHz elliptical cavity conductively cooled by a cryocooler. The cavity has a ~2 μ\mum thick layer of Nb3_3Sn on the inner surface, exposed to the rf field, deposited on a ~3 mm thick bulk Nb shell and a bulk Cu shell, of thickness ⩾5\geqslant 5 mm deposited on the outer surface by electroplating. A bolt-on Cu plate 1.27 cm thick was used to thermally connect the cavity equator to the second stage of a Gifford-McMahon cryocooler with a nominal capacity of 2 W at 4.2 K. The cavity was tested initially in liquid helium at 4.3 K and reached a peak surface magnetic field of ~36 mT with a quality factor of 2×1092\times 10^9. The cavity cooled by the crycooler achieved a peak surface magnetic field of ~29 mT, equivalent to an accelerating gradient of 6.5 MV/m, and it was able to operate in continuous-wave with as high as 5 W dissipation in the cavity for 1 h without any thermal breakdown. This result represents a paradigm shift in the technology of superconducting accelerator cavities

    Open data in building resilience to recurrent natural hazards in remote mountainous communities of Nepal

    Get PDF
    The concept of using open data in development planning and resilience building to frequent environmental hazards has gained substantial momentum in recent years. It is helpful in better understanding local capacities and associated risks to develop appropriate risk reduction strategies. Currently, lack of accurate and sufficient data has contributed to increased environmental risks, preventing local planners the opportunity to consider these risks in advance. To fulfil this gap, this study presents an innovative approach of using openly available platforms to map locally available resources and associated risks in two remote communities of Nepal. The study also highlights the possibility of using the combined knowledge of technical persons and citizen scientists to collect geo-spatial data to support proper decision making. We harnessed the power of citizen scientists to collect geo-spatial data by training them on currently available tools and platforms. Also, we equipped these communities with the necessary instruments to collect location based data. Later, these data collected by citizen scientists were uploaded in the online platforms. The collected data are freely accessible to community members, government and humanitarian actors which could be used for development planning and risk reduction. Moreover, the information co-generated by local communities and scientists could be crucial for local government bodies to plan activities related to disaster risk reduction. Through the piloting in two communities of Nepal, we have found that using open data platforms for collecting and analysing location based data has a mutual benefit to researchers and communities. These data could be vital in understanding the local landscape of development, environmental risk and distribution of resources. Furthermore, it enables both researchers and local people to transfer the technical knowledge, collect location specific data and use them in better decision making

    Effect of Layer Thickness on Structural, Morphological and Superconducting Properties of Nb\u3csub\u3e3\u3c/sub\u3eSn Films Fabricated by Multilayer Sequential Sputtering

    Get PDF
    Superconducting Nb3Sn films can be synthesized by controlling the atomic concentration of Sn. Multilayer sequential sputtering of Nb and Sn thin films followed by high temperature annealing is considered as a method to fabricate Nb3Sn films, where the Sn composition of the deposited films can be controlled by the thickness of alternating Nb and Sn layers. We report on the structural, morphological and superconducting properties of Nb3Sn films fabricated by multilayer sequential sputtering of Nb and Sn films on sapphire substrates followed by annealing at 950 °C for 3 h. We have investigated the effect of Nb and Sn layer thickness and Nb:Sn ratio on the properties of the Nb3Sn films. The crystal structure, surface morphology, surface topography, and film composition were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectroscopy (EDS). The results showed Sn loss from the surface due to evaporation during annealing. Superconducting Nb3Sn films of critical temperature up to 17.93 K were fabricated

    First Results from Nb3Sn Coatings of 2.6 GHz Nb SRF Cavities Using DC Cylindrical Magnetron Sputtering System

    Full text link
    A DC cylindrical magnetron sputtering system has been commissioned and operated to deposit Nb3Sn onto 2.6 GHz Nb SRF cavities. After optimizing the deposition conditions in a mock-up cavity, Nb-Sn films are deposited first on flat samples by multilayer sequential sputtering of Nb and Sn, and later annealed at 950 {\deg}C for 3 hours. X-ray diffraction of the films showed multiple peaks for the Nb3Sn phase and Nb (substrate). No peaks from any Nb3Sn compound other than Nb3Sn were detected. Later three 2.6 GHz Nb SRF cavities are coated with ~1 μ\mum thick Nb3Sn. The first Nb3Sn coated cavity reached close to Eacc = 8 MV/m, demonstrating a quality factor Q0 of 3.2 x 108 at Tbath = 4.4 K and Eacc = 5 MV/m, about a factor of three higher than that of Nb at this temperature. Q0 was close to 1.1 x 109, dominated by the residual resistance, at 2 K and Eacc = 5 MV/m. The Nb3Sn coated cavities demonstrated Tc in the range of 17.9 - 18 K. Here we present the commissioning experience, system optimization, and the first results from the Nb3Sn fabrication on flat samples and SRF cavities.Comment: 21st Intl Conf Radio Frequency Superconductivity (SRF 2023

    Preservation of the High Quality Factor and Accelerating Gradient of Nb3Sn-coated Cavity During Pair Assembly

    Full text link
    Two CEBAF 5-cell accelerator cavities have been coated with Nb3Sn film using the vapor diffusion technique. One cavity was coated in the Jefferson Lab Nb3Sn cavity coating system, and the other in the Fermilab Nb3Sn coating system. Both cavities were measured at 4 K and 2 K in the vertical dewar test in each lab and then assembled into a cavity pair at Jefferson Lab. Previous attempts to assemble Nb3Sn cavities into a cavity pair degraded the superconducting properties of Nb3Sn-coated cavities. This contribution discusses the efforts to identify and mitigate the pair assembly challenges and will present the results of the vertical tests before and after pair assembly. Notably, one of the cavities reached the highest gradient above 80 mT in the vertical test after the pair assembly.Comment: 21st Intl Conf Radio Frequency Superconductivity (SRF 2023

    Deposition of Nb₃Sn Films by Multilayer Sequential Sputtering for SRF Cavity Application

    Get PDF
    Nb3Sn is considered as an alternative of Nb for SRF accelerator cavity application due to its potential to obtain higher quality factors and higher accelerating gradients at a higher operating temperature. Magnetron sputtering is one of the effective techniques that can be used to fabricate Nb3Sn on SRF cavity surface. We report on the surface properties of Nb3Sn films fabricated by sputtering multiple layers of Nb and Sn on sapphire and niobium substrates followed by annealing at 950°C for 3 h. The crystal structure, film microstructure, composition and surface roughness were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The RF performance of the Nb3Sn coated Nb substrates were measured by a surface impedance characterization system. We also report on the design of a multilayer sputter deposition system to coat a single-cell SRF cavity

    An Open Data and Citizen Science Approach to Building Resilience to Natural Hazards in a Data-Scarce Remote Mountainous Part of Nepal

    Get PDF
    The citizen science approach has gained momentum in recent years. It can enable both experts and citizen scientists to co-create new knowledge. Better understanding of local environmental, social, and geographical contexts can help in designing appropriate plans for sustainable development. However, a lack of geospatial data, especially in the context of developing countries, often precludes context-specific development planning. This study therefore tests an innovative approach of volunteer citizen science and an open mapping platform to build resilience to natural hazards in the remote mountainous parts of western Nepal. In this study, citizen scientists and mapping experts jointly mapped two districts of Nepal (Bajhang and Bajura) using the OpenStreetMap (OSM) platform. Remote mapping based on satellite imagery, capacity building, and mobilization of citizen scientists was performed to collect the data. These data were then uploaded to OSM and later retrieved in ArcGIS to produce a usable map that could be exploited as a reference resource for evidence-based decision-making. The collected data are freely accessible to community members as well as government and humanitarian actors, and can be used for development planning and risk reduction. By piloting in two communities of western Nepal, we found that using open data platforms for collecting and analyzing location-based data has a mutual benefit for researchers and communities. Such data could be vital in understanding the local landscape, environmental risk, and distribution of resources. Furthermore, they enable both researchers and local people to transfer technical knowledge, collect location-specific data, and use them for better decision-making
    corecore