
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Physics Faculty Publications Physics 

7-2020 

Multi-Metallic Conduction Cooled Superconducting Radio-Multi-Metallic Conduction Cooled Superconducting Radio-

Frequency Cavity with High Thermal Stability Frequency Cavity with High Thermal Stability 

Gianluigi Ciovati 

Gary Cheng 

Uttar Pudasaini 

Robert A. Rimmer 

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs 

 Part of the Condensed Matter Physics Commons 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/physics_fac_pubs
https://digitalcommons.odu.edu/physics
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages


Superconductor Science and Technology

Supercond. Sci. Technol. 33 (2020) 07LT01 (7pp) https://doi.org/10.1088/1361-6668/ab8d98

Letter

Multi-metallic conduction cooled
superconducting radio-frequency cavity
with high thermal stability

Gianluigi Ciovati1,2, Gary Cheng1, Uttar Pudasaini3 and Robert A Rimmer1

1 Thomas Jefferson National Accelerator Facility Newport News VA 23606 United States of America
2 Center for Accelerator Science Department of Physics Old Dominion University Norfolk Virginia 23529
United States of America
3 The College of William & Mary Williamsburg VA 23185 United States of America

E-mail: gciovati@jlab.org

Received 29 January 2020, revised 25 March 2020
Accepted for publication 27 April 2020
Published 15 May 2020

Abstract
Superconducting radio-frequency cavities are commonly used in modern particle accelerators
for applied and fundamental research. Such cavities are typically made of high-purity, bulk Nb
and with cooling by a liquid helium bath at a temperature of ∼2 K. The size, cost and
complexity of operating a particle accelerator with a liquid helium refrigerator make the current
cavity technology not favorable for use in industrial-type accelerators. We have developed a
multi-metallic 1.495 GHz elliptical cavity conductively cooled by a cryocooler. The cavity has a
∼2 µm thick layer of Nb3Sn on the inner surface, exposed to the rf field, deposited on a ∼3 mm
thick bulk Nb shell and a bulk Cu shell, of thickness ⩾5 mm deposited on the outer surface by
electroplating. A bolt-on Cu plate 1.27 cm thick was used to thermally connect the cavity
equator to the second stage of a Gifford-McMahon cryocooler with a nominal capacity of 2 W
at 4.2 K. The cavity was tested initially in liquid helium at 4.3 K and reached a peak surface
magnetic field of ∼36 mT with a quality factor of 2× 109. The cavity cooled by the cryocooler
achieved a peak surface magnetic field of ∼29 mT, equivalent to an accelerating gradient of
6.5 MV m–1. The conduction-cooled cavity could be operated in continuous-wave with as high
as 5 W dissipation in the cavity for 1 h without any thermal breakdown, because of the Cu outer
layer with high thermal conductivity. This result represents a paradigm shift in the technology of
superconducting accelerator cavities.

Keywords: radio-frequency cavities, cryocooler, conduction cooling

(Some figures may appear in colour only in the online journal)

1. Introduction

Superconducting radio-frequency (SRF) cavities made of
high-purity (residual resistivity ratio, RRR, >250) bulk Nb

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

are one of the building blocks of modern particle accelerator
facilities for applied and fundamental research throughout the
world [1]. Such cavities have different geometries, depending
on the speed and type of particle they are designed to accel-
erate, the operating frequency is in the gigahertz range and
they are surrounded by vessels containing liquid He (LHe)
which cools and maintains the cavity surface at ∼2 K during
operation in a so-called cryomodule [2, 3]. The size, cost and
complexity of a sub-cooled liquid He cryoplant has limited a
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more widespread application of the SRF technology so far. To
the authors’ knowledge, out of the estimated ∼30 000 dedic-
ated industrial particle accelerators worldwide, the only one
using the SRF technology is a 9 MeV electron linac for med-
ical isotope production, which uses a commercial liquid He
refrigerator with a capacity of 100 W at 4.3 K [4].

The first application of cryocoolers for SRF cryomodules
was done in two cryomodules for the Japan Atomic Energy
Research Institute Free Electron Laser in 1993, in which they
used Gifford-McMahon (GM) cryocoolers to cool two heat
shields to 80 K and 40 K, respectively, and to cool down
and recondense the boiled-off liquid in the helium tank sur-
rounding a 499.8 MHz cavity [5, 6]. Cryocoolers are reliable,
compact, closed-cycle refrigerators which are easier to oper-
ate than LHe ones. An example of a cryocooler application
is cooling of superconducting magnets in magnetic resonance
imaging machines at hospitals. The power capacity of cryo-
coolers has been increasing in the last few years and models
with a capacity of 2 W at 4.2 K are now available. The capital
cost per watt of cooling power has also been decreasing such
that the capital cost of a 4 K cryocooler-based cooling system
is lower than that of a LHe-based system if the total cooling
power required is less than ∼10 W [7].

Recent progress in the development of thin-film Nb3Sn
has resulted in β= 1 SRF elliptical cavities of frequency
greater than 500 MHz achieving moderate accelerating gradi-
ents (Eacc∼ 10−15 MV m–1) but a much higher quality factor
(Q0 ∼ 1010) than could be obtained if those cavities were
made of just bulk Nb and cooled in LHe at 4.3 K [8]. Such
improvements in both cryocoolers and Nb3Sn SRF cavities
may enable the design of compact, low-energy (1−25 MeV)
electron accelerators for industrial and medical applications
or for compact light sources [9, 10]. An example of such
industrial applications is the environmental remediation of flue
gases and/or wastewater. A 1 MeV, 1 MW SRF electron accel-
erator was recently designed for this application, with a cryo-
module having a single-cell cavity cooled by conduction using
four cryocoolers with a capacity of 1.5W at 4.3 K [11]. Recent
work on the development of SRF cavities conduction cooled
by a cryocooler has resulted in a 650 MHz single-cell ellipt-
ical cavity made of bulk Nb operating up to an accelerating
gradient of 1.5 MV m–1 [12], corresponding to a peak surface
magnetic field, Bp, of 5.5 mT [13].

Herewe describe the preparation and test results of a single-
cell elliptical cavity conduction cooled by a two-stage com-
mercial GM cryocooler. Our approach was to deposit a thick,
high-purity Cu layer on the outer cavity surface and to minim-
ize the number of joints between the cavity and the 4 K stage of
the cryocooler, to maximize the thermal stability of the cavity
against quenching of the superconducting state.

2. Development of cavity coatings

The single-cell cavity used for this study was made of
large-grain Nb (RRR∼ 280) from CBMM, Brazil [14]. The
cell shape is that of the end-cell of a High-Gradient cavity
(geometry factorG= 269Ω, shunt impedance R/Q= 100.3Ω,

ratio of peak surface electric field over the accelerating field
Ep/Eacc = 1.77, ratio of peak surface magnetic field over the
accelerating field Bp/Eacc = 4.47 mT (MV m–1)–1, proposed
for the 12 GeV Upgrade of the CEBAF accelerator at Jeffer-
son Lab [15]. The design resonant frequency of the TM010

accelerating mode is 1.495 GHz. The cavity wall thickness is
∼2.9 mm and the end flanges are made of pure Nb. The cavity
fabrication used standard techniques of the SRF technology
such as deep-drawing, milling and electron-beam welding of
cavity parts.

2.1. Nb3Sn inner coating

The coating of the inner surface of the cavity with Nb3Sn
was done together with another single-cell cavity, stacked ver-
tically inside a high-temperature vacuum furnace. The cavity
used for this study was at the bottom position. A crucible with
6 g of Sn (99.999% purity from Sigma Aldrich) and 3 g of
SnCl2 (99.99% purity from Sigma Aldrich), packaged inside
two pieces of Nb foils, was placed at the bottom flange of the
bottom cavity. The top flange of the top cavity was closed with
a Nb cover. The setup was assembled inside an ISO 4 clean
room and then installed onto the furnace insert [16, 17]. Once
the pressure reached 2.7× 10−3 Pa, the furnace was heated
by ramping up the temperature at a rate of 6 ◦C min–1 until
it reached ∼500 ◦C. This temperature was then kept con-
stant for one hour and subsequently ramped up at a rate of
12 ◦C min–1 up to the coating temperature of ∼1200 ◦C.
The temperature was monitored with sheathed type C ther-
mocouples attached to the cavities at different locations. After
maintaining the coating temperature for 3 h, heating ceased,
and the furnace was allowed to cooldown gradually. When the
furnace temperature reached below 45 ◦C, the insert was back-
filled to 101.3 kPa with nitrogen, and the coated cavities were
removed from the deposition system.

2.2. Cu outer coating

Oxygen-free high-conductivity (OFHC) copper is one of the
metals which has a higher thermal conductivity than high-
purity Nb below 10 K and it has been used as a substrate for
the deposition of Nb thin-films on the inner surface of cavities
for particle accelerators [18]. The higher thermal conductivity
allows for a better thermal stabilization of the cavity, even
when cooling with LHe, particularly against the presence of
defects in the superconducting thin-film. However, at present
there is no technique which allows depositing a thin film
of Nb3Sn directly onto copper with similar performance as
achieved by forming the Nb3Sn layer onto bulk Nb by vapor
diffusion.

Nb/Cu bi-metallic samples were produced by electroplat-
ing Cu directly onto a Nb and thermal conductivity meas-
urements showed that values of ∼1 kW (m·K)–1 could be
achieved at 4.3 K, compared to ∼75 W (m·K)–1 obtained on
Nb only [19]. However, achieving such high thermal con-
ductivity depends on obtaining a good adhesion of the Cu on
the Nb, which we were not able to achieve reliably and con-
sistently by electroplating Cu directly onto the Nb. A recent
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Figure 1. Pictures of the multi-metallic SRF cavity. The length of
the cavity from flange to flange is 31.8 cm and the electroplated Cu
ring at the equator is 25.4 cm in diameter and 1.27 cm thick.

collaboration between Jefferson Lab, Euclid Techlabs and
Concurrent Technologies Corporation (CTC) produced Nb/Cu
samples obtained by cold-spraying Cu onto Nb with excellent
bonding: a pressure of∼40MPa was required to detach the Cu
from the Nb in a pull-adhesion test [20]. However, the thermal
conductivity of the cold-sprayed copper was not as high as that
obtained by electroplating. While R&D efforts are ongoing
towards increasing the thermal conductivity of cold-sprayed
copper, we pursued cold-spraying as a method to grow a thin
seed layer onto the Nb and then electroplate the copper to full
thickness on such layer.

A copper layer ∼76 µm thick was deposited on the cavity
outer surface by cold-spray at CTC, in Johnstown, PA. Copper
powder of 99.9% purity and∼40 µm size was used along with
He as gas carrier. Oxygen-free copper was then electroplated
onto the cold-sprayed layer at AJ Tuck Co., in Brookfield, CT.
The electroplating was done in several steps to assure that the
thickness of the deposited layer was at least 5 mm along the
entire cavity contour and finally to grow a ring∼25 cm in dia-
meter and∼1.3 cm thick at the cavity equator. The cavity was
finally machined at Jefferson Lab to remove excess Cu and to
make eighteen holes evenly spaced along the Cu ring at the
cavity equator. Gore-Tex gaskets were used to seal the cav-
ity ends during both cold-spraying and electroplating, how-
ever it was found that some of the copper sulfate plating solu-
tion had leaked inside the cavity. The cavity was filled with
nitric acid at room temperature for 1 h to dissolve any pos-
sible CuSO4 residue. Figure 1 shows a picture of the completed
multi-metallic cavity.

3. Assembly of cavity-cryocooler test stand

A vertical test stand was designed and built to allow test-
ing the cavity with a cryocooler. The GM cryocooler (RDE-
418D4, Sumitomo) is bolted to the test stand top plate. The
cavity is kept under a static vacuum and sits on a G10 plate
held by two stainless steel threaded rods attached to the top
plate. A plate ∼1.27 cm thick machined from OFHC cop-
per is bolted to the cryocooler 4 K stage on one side and to

Figure 2. Cross-section of the 3D model of the cavity-cryocooler
the test stand (a) and detail of the cavity connection to the
cryocooler 4 K stage (b). The test stand has a 61 cm diameter top
plate and it is 93 cm in height.

the cavity equator ring on the other side. The contact surfaces
were cleaned with Brasso metal polish and wiped with acet-
one and isopropanol. Apiezon N thermal grease was spread
on the contact surfaces. The bolts connecting the Cu plate to
the cryocooler were torqued to 3 N·m, as recommended by the
cryocooler manufacturer. The cavity Cu ring and the Cu plate
were sandwiched between four 304 stainless steel rings, each
0.64 cm thick, on each side and pressed together with 1.27 cm
diameter, 316 stainless steel threaded rods and silicon-bronze
nuts, torqued to 115 N·m. Such a combination of number of
rings and torque value allowed achieving a uniform pressure
along the ring, estimated to be ∼46 MPa. A high, uniform
pressure allows minimizing the thermal resistance of the joint.
Figure 2 shows a 3D rendering of the test stand and of the cav-
ity connected to the cryocooler. Prior to installation onto the
cavity, all of the stainless steel hardware had been degaussed
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to a remanent magnetic field of less than 20 mG on-contact
using a plate type demagnetizer.

The cavity and cryocooler 4 K stage were wrapped with
ten layers of multi-layer insulation (MLI) and they are inside
an inner magnetic shield. Such inner shield is inside a copper
cylinder thermal shield attached to the cryocooler 50 K stage
and wrapped with ten layers of MLI. Finally, an outer mag-
netic shield surrounds the thermal shield. Two rf cables con-
nect the input and pick-up antennaemounted on the cavity to rf
feedthroughs on the top plate. Sixteen calibrated Cernox RTDs
were distributed on the cavity, Cu plate and the thermal shield.
Three cryogenic flux-gate magnetometer probes were placed
at locations on the cavity ring with different orientations.

4. Cavity test results

The rf performance was first measured after the deposition
of the Nb3Sn film on the inner surface of the bulk Nb cav-
ity. In preparation for the rf test, the cavity was degreased in
an ultrasonic tank, high-pressure rinsed with ultrapure water,
assembled with stainless steel flanges with pump-out port and
rf feedthroughs and sealed to the cavity with In wire. The cav-
ity was evacuated on a standard vertical test stand to a pres-
sure of ∼1× 10−6 Pa before inserting in a vertical cryostat in
the Vertical Test Area (VTA) at Jefferson Lab. Cryogenic flux-
gate magnetometer (FGM) probes (Mag F, Bartington Instru-
ments) and calibrated Cernox (CX-1010-SD, Lakeshore Cryo-
tronics) resistance-temperature devices (RTDs) were attached
to the cavity tomonitor the temperature gradient along the cav-
ity and the local magnetic flux density during cooldown close
to the critical temperature of Nb3Sn, Tc∼ 18 K. The rf per-
formance of the Nb3Sn cavity in liquid He at 4.3 K, shown in
figure 3, was limited by anomalous heating at 4.3 K starting at
Bp∼ 36 mT and by thermal quench at Bp∼ 54 mT at 2.0 K.

The cavity rf performance was measured again after depos-
ition and machining of the Cu outer layer. The final surface
preparation and assembly followed the same steps as after the
Nb3Sn coating, except that an isolation valve was connected
between the pump-out port and the pumping line of the vertical
test stand. The cavity rf performance was measured in liquid
He and it was limited by “Q-switches” at Bp∼ 35 mT at 4.3 K,
whereas it quenched at Bp∼ 52 mT at 2.0 K (figure 3). How-
ever, the quality factor degraded more rapidly with increasing
field above ∼14 mT, compared to the test prior to Cu-coating.

After the rf test, the cavity was sealed by closing the valve
between the pump-out port and the test stand pumping line.
The cavity was then removed from the standard test stand and
attached to the one with the cryocooler, as described in sec-
tion 3. The cavity-cryocooler test stand was inserted in a VTA
vertical cryostat, which was used only as a vacuum vessel for
this test. The magnitude of the ambient magnetic flux dens-
ity at the cavity was less than 3 mG. The cooldown lasted
about three days and the average steady state temperature of
sensors along the Cu plate attached to the cavity equator ring
and on top and bottom of the cavity was (3.8± 0.4) K. In order
to achieve a good thermalization of the cavity in the vicinity
of 18 K, which is required in order to minimize rf losses due

Figure 3. Quality factor of the SRF cavity as a function of the peak
surface magnetic field or of the accelerating gradient, in cw mode.
The temperature of the outer cavity surface was constant at 4.3 K for
the tests in LHe, whereas it increased with increasing rf field in the
test with cryocooler. The inset shows the average cavity temperature
as a function of the dissipated power, compared with the
temperature of a Cu block with a heater mounted to the 4 K stage of
the cryocooler as a function of the heater power.

to trapped magnetic flux generated by thermoelectric currents
[21], the cryocooler was cycled on and off twice close to this
temperature. The maximum magnetic flux density measured
by the FGM probes close to Tc was ∼14 mG and the temper-
ature gradient along the cavity was ∼0.09 K cm–1.

The Q0-value at Bp= 2.4 mT was 1× 1010 and the Q0(Bp)
curve is shown in figure 3 along with the data measured in LHe
at 4.3 K before and after Cu coating. The cavity reached amax-
imum Bp-value of 29 mT above which a Q-switch occurred,
reducing both Bp andQ0 to 22 mT and 5× 108, respectively. It
was verified that the Q0 vs. Bp curve is reversible when lower-
ing the forward power. The test was stopped at Ploss= 5 W,
limited by the power handling capability of the input power
cable. The cavity was held at this level of dissipated power,
corresponding to Q0 = 5× 108 at 22 mT, for 1 h after which
the rf power was turned off. The average cavity temperature,
Tavg, showed a modest increase from 6.9 K to 7.1 K , as shown
in figure 4. There was no indication of thermal instability, such
as sudden temperature jumps or dT/dt increasing over time
during this extended cavity operation test. All rf tests were
done in continuous-wave (cw) mode (100% duty factor) and
there were no detectable X-rays from possible field-emitted
electrons in any of the tests. The amplitude of the cavity micro-
phonics was measured at Bp= 10 mT using the digital low-
level rf control system used for the cavity rf test [22] and
the peak-to-peak value was 13.8 Hz. The frequency of the
microphonics was 1.2 Hz, which is the frequency of the dis-
placer in the 4 K stage of the cryocooler.
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Figure 4. Average temperature of the cavity outer surface while
operating the conduction cooled cavity in cw mode with a constant
dissipated power of 5 W for 1 h with no indication of thermal
instability. The width of the shaded area corresponds to the standard
deviation.

5. Discussion

A thermal breakdown of the superconducting state is a com-
mon limitation in the operation of SRF cavities in particle
accelerators, even when cooled in superfluid He. Except for
few exceptions, such thermal breakdown occurs well below
the superheating field of the superconductor and it is caused
by the presence of defects on the inner cavity surface [23].
An example of such defects are normal conducting inclusions
which are heated by the rf field and when the local temperature
exceeds Tc the surrounding superconductor quenches. Such
quenches can occur even at a relatively low power density. An
estimate of the minimum Cu-layer thickness required to reach
the highest Bp-value achieved by the cavity tested in LHe after
Nb3Sn coating was carried out using the finite-element com-
puter software ANSYS [24]. The analysis included the heat
capacity map of the cryocooler, the temperature- and field-
dependent surface resistance (assumed to be uniform) from the
cavity test, a contact thermal conductance of 0.7W/K [25], and
estimated radiation and static heat loads of 0.18W and 0.58W
respectively. The occurrence of a stable point of operation in
the analysis is given by the intersection between the curve of
the total heat load and that of the cryocooler cooling power as
a function of temperature of the cryocooler’s 4 K stage. The
Cu-layer thickness resulting from this finite-element thermal
analysis was 4 mm, and a minimum of 5 mm Cu-plating was
requested to have some margin.

The Q-switch which limits the maximum achievable sur-
face field in this cavity is attributed to defective regions in
poor thermal contact with the surrounding superconductor. At
the onset of the Q-switch, these regions may become normal
conducting and dissipate more and more of the cavity’s stored
energy as more power is transmitted into the cavity. One pos-
sibility, is the presence of a large number of µm-size defects

Figure 5. Temperature distribution on the cavity surface and Cu
plate with 5 W rf heat load and 0.58 W static heat load, calculated
with ANSYS.

distributed uniformly over the cavity surface, given the uni-
formity of the temperature distribution on the cavity outer sur-
face even with a dissipated power of 5 W. Such a case was
evaluated with a steady-state thermal analysis with ANSYS
and the temperature distribution is shown in figure 5. A uni-
form surface resistance value of 460 nΩwas considered for the
analysis, corresponding to a total power dissipation of 5 W at
Bp= 22 mT as it was measured in the experiment. The same
values of static and radiative heat leaks and contact thermal
conductance used for the analysis determining the minimum
Cu thickness were applied. The temperature at the cryocooler
location was set to 7.5 K, based on the heat capacity map.
Figure 5 indeed shows that the temperature is quite uniform
over the whole cavity surface and close to that of the cryo-
cooler, because of the high-conductivity Cu layer. A case in
which the additional anomalous rf power loss was concen-
trated in a single defect was also considered, however it did
not result in a stable solution.

The change in the Q0(Bp) curve above ∼20 mT indicates
an onset of ohmic-type losses as Ploss ∝ H2

p at higher rf field.
If such dependence would have continued, without the occur-
rence of a Q-switch, a Ploss= 5 W would have been reached
at Bp= 41 mT. Such a value of Bp would have met the equi-
valent accelerating gradient requirement for a single-cell cav-
ity designed for a 1 MeV electron linear accelerator for envir-
onmental remediation [11]. However, it should be considered
that multiple cryocoolers would still be needed to compensate
for additional heat losses due to fundamental power couplers,
high-order-mode loads and warm-to-cold transitions in a real-
istic cryomodule. The origin, size and location of the defective
regions are unclear at this stage. One possibility is the contam-
ination of the Nb3Sn film by the plating solution. Another pos-
sibility is related to strain of the Nb3Sn film given by the dif-
ferential thermal expansion coefficient between the Cu layer
and the Nb layer, since it is well known that the superconduct-
ing properties of Nb3Sn are very sensitive to strain [26]. A
finite element mechanical analysis with ANSYS showed that
stresses as high as ∼275 MPa at the irises and ∼185 MPa
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elsewhere on the cell might be applied to the Nb3Sn-coated
Nb, due to the larger thermal contraction of Cu. Given that the
yield strength of both oxygen-free Cu and high-purity Nb is
∼60 MPa at 300 K, increasing to ∼120 MPa and ∼600 MPa
at 4 K for Cu and Nb respectively [27, 28], plastic deformation
might occur in some regions of the cavity. Future work would
be needed towards stress management to mitigate the effects
of thermal mismatch variations and improving the stiffness of
the cryocooled assembly.

6. Conclusion

In summary, we were able to operate a multi-metallic SRF
cavity with conduction cooling, using a commercial GM cryo-
cooler, in cw mode up to 29 mT peak surface magnetic field
and up to 5 W of power dissipation. In spite of the rigid con-
nection between the cryocooler’s 4 K stage and the cavity, the
amplitude of the microphonics does not represent an issue, as
it was well within what is typically achieved and controlled
in SRF accelerator cavities [29, 30], particularly considering
the low loaded-Q values (104−105) typically required for a
low-energy, high-power accelerator.

The copper coating techniques that we used to improve the
thermal stability of the cavity do not set a limit on the cavity
size, although the availability of a method to obtain a high-
purity copper coating by cold-spray would result in a faster
process.

To the authors’ knowledge, the maximum Bp and Ploss
values we have reported are the highest ever achieved by a
conduction cooled SRF cavity and represent a fundamental
stepping stone towards the demonstration of compact, low-
cost accelerators for applications in industry, medicine or for
university-scale research.

After this work was completed, we became aware of a new
report from Fermilab in which Bp∼ 24 mT and a Ploss of 4 W
were achieved in a cryocooler conduction cooled 650 MHz
single-cell cavity [31].
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