810 research outputs found

    Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot

    Get PDF
    © 2017 Author(s). Nitride quantum dots are well suited for the deterministic generation of single photons at high temperatures. However, this material system faces the challenge of large in-built fields, decreasing the oscillator strength and possible emission rates considerably. One solution is to grow quantum dots on a non-polar plane; this gives the additional advantage of strongly polarized emission along one crystal direction. This is highly desirable for future device applications, as is electrical excitation. Here, we report on electroluminescence from non-polar InGaN quantum dots. The emission from one of these quantum dots is studied in detail and found to be highly polarized with a degree of polarization of 0.94. Single-photon emission is achieved under excitation with a constant current giving a g(2)(0) correlation value of 0.18. The quantum dot electroluminescence persists up to temperatures as high as 130 K

    Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots

    Get PDF
    Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g((2))(0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems

    Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator

    Get PDF
    We present a new laser system and nonlinear microscope, designed for differential nonlinear microscopy. The microscope features time-correlated single photon counting of multiphoton fluorescence generated by an alternating pulse-train of orthogonally polarized pulses. The generated nonlinear signal is separated using home-built electronics. Results are presented on fluorescence-detected nonlinear absorption linear anisotropy (FDNALA) of chloroplasts in Asparagus Sprengerii Regel and of Congo Red-stained cellulose

    Analyzing Ball Bearing Capacitance using Single Steel Ball Bearings - Data

    Get PDF
    Supplementary data to the publication "Analyzing Ball Bearing Capacitance using Single Steel Ball Bearings" by Steffen Puchtler, Julius van der Kuip and Eckhard Kirchner published in Tribology Letters by Springer. Capacitance measurements of hybrid ball bearings with a single steel rolling element were carried out. This helps to measure only one current path through the bearing at a time and thus, gives a much clearer picture of the contact capacitance of rolling elements in and out of the load zone. Provided is raw and evaluated measurement data as well as calculation results

    Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures.

    Get PDF
    We report the successful realisation of intrinsic optical polarisation control by growth, in solid-state quantum dots in the thermoelectrically cooled temperature regime (≥200 K), using a non-polar InGaN system. With statistically significant experimental data from cryogenic to high temperatures, we show that the average polarisation degree of such a system remains constant at around 0.90, below 100 K, and decreases very slowly at higher temperatures until reaching 0.77 at 200 K, with an unchanged polarisation axis determined by the material crystallography. A combination of Fermi-Dirac statistics and k·p theory with consideration of quantum dot anisotropy allows us to elucidate the origin of the robust, almost temperature-insensitive polarisation properties of this system from a fundamental perspective, producing results in very good agreement with the experimental findings. This work demonstrates that optical polarisation control can be achieved in solid-state quantum dots at thermoelectrically cooled temperatures, thereby opening the possibility of polarisation-based quantum dot applications in on-chip conditions

    Direct generation of linearly polarized single photons with a deterministic axis in quantum dots

    Get PDF
    We report the direct generation of linearly polarized single photons with a deterministic polarization axis in self-assembled quantum dots (QDs), achieved by the use of non-polar InGaN without complex device geometry engineering. Here, we present a comprehensive investigation of the polarization properties of these QDs and their origin with statistically significant experimental data and rigorous k·p modeling. The experimental study of 180 individual QDs allows us to compute an average polarization degree of 0.90, with a standard deviation of only 0.08. When coupled with theoretical insights, we show that these QDs are highly insensitive to size differences, shape anisotropies, and material content variations. Furthermore, 91% of the studied QDs exhibit a polarization axis along the crystal [1–100] axis, with the other 9% polarized orthogonal to this direction. These features give non-polar InGaN QDs unique advantages in polarization control over other materials, such as conventional polar nitride, InAs, or CdSe QDs. Hence, the ability to generate single photons with polarization control makes non-polar InGaN QDs highly attractive for quantum cryptography protocols

    Defects in III-nitride microdisk cavities

    Get PDF
    Nitride microcavities offer an exceptional platform for the investigation of light-matter interactions as well as the development of devices such as high efficiency light emitting diodes (LEDs) and low-threshold nanolasers. Microdisk geometries in particular are attractive for low-threshold lasing applications due to their ability to support high finesse whispering gallery modes (WGMs) and small modal volumes. In this article we review the effect of defects on the properties of nitride microdisk cavities fabricated using photoelectrochemical (PEC) etching of an InGaN sacrificial superlattice (SSL). Threading dislocations originating from either the original GaN pseudosubstrate are shown to hinder the undercutting of microdisk cavities during the photoelectric chemical (PEC) etching process resulting in whiskers of unetched material on the underside of microdisks. The unetched whiskers provide a pathway for light to escape, reducing microdisk Q-factor if located in the region occupied by the WGMs. Additionally, dislocations can affect the spectral stability of quantum dot emitters, thus hindering their effective integration in microdisk cavities. Though dislocations are clearly undesirable, the limiting factor on nitride microdisk Q-factor is expected to be internal absorption, indicating that the further optimisation of nitride microdisk cavities must incorporate both the elimination of dislocations and careful tailoring of the active region emission wavelength and background doping levels.The original research shown in this article has been funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement no. 279361 (MACONS). RAO acknowledges the Royal Academy of Engineering Leverhulme Trust Senior Research Fellowship scheme.This is the author accepted manuscript. The final version is available from the Institute of Physics via https://doi.org/10.1088/1361-6641/32/3/03300
    corecore