47 research outputs found

    A striking relationship between dust extinction and radio detection in DESI QSOs: evidence for a dusty blow-out phase in red QSOs

    Get PDF
    We present the first eight months of data from our secondary target programme within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our programme uses a mid-infrared and optical colour selection to preferentially target dust-reddened quasi-stellar objects (QSOs) that would have otherwise been missed by the nominal DESI QSO selection. So far, we have obtained optical spectra for 3038 candidates, of which ∼70 per cent of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to AV ∼4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence, we suggest that red QSOs may represent a transitional 'blow-out' phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO

    A striking relationship between dust extinction and radio detection in DESI QSOs: evidence for a dusty blow-out phase in red QSOs

    Full text link
    We present the first eight months of data from our secondary target program within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our program uses a mid-infrared and optical colour selection to preferentially target dust-reddened QSOs that would have otherwise been missed by the nominal DESI QSO selection. So far we have obtained optical spectra for 3038 candidates, of which ~70% of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to Av~4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence we suggest that red QSOs may represent a transitional "blow-out" phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO.Comment: 21 pages, 17 figures, 6 tables, accepted by MNRA

    Overview of the instrumentation for the Dark Energy Spectroscopic Instrument

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.″1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned

    Estudio de la prevalencia del cólera porcino en la provincia de Loja, mediante el método de inmunofluorescencia y su relación con la peste porcina africana

    No full text
    Esta investigación se realizó en todos los cantones de la Provincia de Loja, con la finalidad de diagnosticar la prevalencia del cólera porcino mediante el método de munofluorescencia y su relación con la peste porcina africana, Se determinó finalmente que la tasa de ataque provincial por cólera porcino fue del 39.73, en tanto que por peste porcina africana el resultado fue negativoDoctor en Medicina Veterinaria y ZootecniaCuenc
    corecore