161 research outputs found

    Effetto dei suoli degradati sul comportamento vegeto-produttivo della vite

    Get PDF
    In Italian vineyards it is common to find more or less extended areas with chemico-physical or biological soil deficiencies and problems in plant vigor and grape production. A reduced agronomic functionality is caused by wrong soil managements and improper land preparation before vine plantations. A strong land transformation alters, in fact, the existing natural balance, causing loss of organic matter and nutrients, erosions, reduction of available water and metal accumulation. This phenomenon affects the growth of vines and the grape yields. The aim of this work is to evaluate the effect of degraded soils on the vineyards of two Tuscan vine-growing regions (Chianti Classico and Maremma Toscana). In two farms, we have identified respectively three degraded and three non-degraded areas in order to assess the fitness of the vines and the quality of the grapes. We found marked differences between degraded and non-degraded areas: as expected, the soil conditions have influenced the vigor of the plants, the production and the grapes had an unbalanced maturation

    Validation of a small scale woody biomass downdraft gasification plant coupled with gas engine

    Get PDF
    In recent years, small scale cogeneration systems (< 500 kWe) distributed in different geographical locations using biomass has received special attention as economically competitive and environmentally friendly ways of producing energy. These systems can be integrated to industrial and agricultural activities where biomass residues are generated and can be converted into electricity and thermal energy by combustion or gasification. The legislations of many European countries such as Italy concerning renewable energy and energy efficiency along the taxation schemes have raised the incentives for small scale cogeneration plants. Consequently, there is a clear economic interest of the companies in this sector and there is also a scientific interest towards demonstration of their energetic efficiency, environmental performance and reliability. Among the suggested technologies for the biomass conversion into energy, downdraft gasification (using air as gasification agent), coupled with internal combustion engines, has the advantage of high electric efficiency (~ 25%) and low tar generation, making easier the gas cleaning process necessary for its use into engines. In the present work, the results of a measurement campaign performed on a commercial scale 350 kWth downdraft woodchips gasification plant, coupled with an SI internal combustion engine (ICE), are presented and discussed. The main goals of this first experimental campaign have been to verify the stability of gasifier and engine operation, operability of the plant and to determine its energy efficiency. The campaign verified a stable operation of the gasifier and the plant produced a syngas with a composition suitable for a gas engine. The energy balance resulted in a potential overall wood fuel to electricity efficiency of about 23 %

    Soil functionality assessment in degraded plots of vineyards

    Get PDF
    Land transformation to adapt fields to mechanization in perennial crop farming is a common practice which includes land levelling, deep ploughing, stone-breakage and clearing, application of fertilizers and amendments. Manipulation of the natural soil profile along its entire depth can severely disturb the naturally existing chemical physical,biological and hydrological equilibrium (Costantini and Barbetti, 2008; Costantini et al., 2013). The most common effects of the land transformation are mixing of soil horizons and soil truncation, which result in reduction of soil depth and available water, organic matter depletion, enrichment of calcium carbonate content in the topsoil,imbalance of some element ratio, and decline in the activity and diversity of soil biological communities involved in nutrient cycles. A decline in the capacity of soil to accommodate the soil-dwelling organisms causes a strong impact on several ecosystem services, in particular, the growth of the vine, the quality and quantity of the grapes,the production costs and the risk of erosion. These negative effects of a pre-planting mismanagement can occur simultaneously and interact to decrease soil fertility and grapevine performance (Lanyon et al., 2004; Tagliavini and Rombolà, 2001; Martínez-Casasnovas and Ramos, 2009).Since soil spatial variability is usually high, soil manipulations frequently result into reduced soil functionality and decline of soil ecosystem services in defined plots of the vineyards. Sometimes soil degradation in these areas is very high and compromises not only vine performance and crop yield, but also disease resistance of plants to diseases and their survival. The impact of improper soil manipulations in vineyards may be of particular concern, because vineyards are frequently located on marginal hillsides, which are sensitive to soil erosion and characterized by shallow soil depth (Ramos, 2006). This paper wants to show the assessment of soil functionality in degraded areas within two farms in Tuscany. This work reports the results of the first activities in Italian sites of the ReSolVe Core-organic+ project, aimed at restoring optimal Soil functionality in degraded areas within organic European vineyards

    Assessment and restoring soil functionality in degraded areas of organic vineyards. The preliminary results of the ReSolVe project in Italy

    Get PDF
    In both conventional and organic Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include: reduced contribution of the soil fauna to the ecosystem services (i.e. nutrient cycles), poor organic matter content, imbalance of some element ratio, altered pH, water deficiency, soil compaction and/or scarce oxygenation. ReSolVe is a transnational and interdisciplinary 3-years research project aimed at testing the effects of selected organic strategies for restoring optimal soil functionality in degraded areas within vineyard. The different restoring strategies implemented in each plot will be: i) compost produced on farm by manure + pruning residue + grass, ii) faba bean and barley green manure, iii) sowing and dry mulching with Trifolium squarrosum L. During two years of such treatments, the trend of the soil features and the grapevine status will be monitored in detail, to reveal the positive and negative effects of such treatments. The project involves 8 research groups in 6 different EU countries (Italy, France, Spain, Sweden, Slovenia, and Turkey), with experts from several disciplines, including soil science, ecology, microbiology, grapevine physiology, viticulture, and biometry. The experimental vineyards are situated in Italy (Chianti hills and Maremma plain, Tuscany), France (Bordeaux and Languedoc), Spain (La Rioja) and Slovenia (Primorska) for winegrape, and in Turkey (Adana and Mersin) for table grape. Soil features before implementing restoring strategies showed lower content of soil organic matter and enzyme activities, and higher carbonates in degraded areas than in the non-degraded areas. The Biological Soil Quality values of microarthropods were always high, in comparison with data registered in similarly managed vineyards or stable ecosystems, and the data showed homogeneous patterns within the experimental plots. Nematode abundance, taxa richness and maturity (MI) and plant parasitic (PPI) indices were higher in nondegraded than degraded areas, but differences were not significant. Grapevines in degraded areas of both farms showed less vegetative vigour and significantly lower values in the SPAD colour index. The yield and the weight of the grape bunches and berries were greater in the not degraded. The grapes of degraded areas at harvest had instead a sugar content significantly higher (on average +2.5�Brix). The restoration techniques and the monitoring methodologies developed and tested during the ReSolVe project will be described in specific final guidelines. The restoration techniques will be accessible for all the European farmers and will be low cost and environmental-friendly. A protocol of analyses and measurements between the all partners will allow an effective and comparable monitoring of vineyard ecosystemic functioning in European countries

    Evaluation of Lionex TB kits and mycobacterial antigens for IgG and IgA detection in cerebrospinal fluid from tuberculosis meningitis patients

    Full text link
    To evaluate commercial Lionex TB together with four antigens of Mycobacterium tuberculosis (MPT-64, MT10.3, 16 kDa and 38 kDa) for IgG and IgA cerebrospinal fluid (CSF) detection in the diagnosis of tuberculosis meningitis (TBM) with CSF negative acid-fast bacilli staining, 19 cases of TBM, 64 cases of other infectious meningoencephalitis and 73 cases of other neurological disorders were tested by enzyme linked immunosorbent assay. IgA-MPT-64 and IgG Lionex showed the highest sensitivities, specificities, positive predictive value and negative predictive value (63.2%, 47.4%; 95%, 93.7%; 40%, 98% and 28.4%, 97.1%, respectively). However, while grey zone was 12.7% and 6%, respectively, lowering sensitivity but maintains high specificity (> 95%). High protein concentration in CSF was associated with antibody positivity CSF/HIV+ which did not influence the sensitivity of both tests. To our knowledge, this is the first description of IgA-MPT-64 and IgG Lionex antibodies in CSF-TBM and, although there is good specificity, adjustments are needed based on antigen composition to enhance sensitivity

    Presentation and Outcome of Tuberculous Meningitis in a High HIV Prevalence Setting

    Get PDF
    Mycobacterium tuberculosis is a common, devastating cause of meningitis in HIV-infected persons. Due to international rollout programs, access to antiretroviral therapy (ART) is increasing globally. Starting patients with HIV-associated tuberculous meningitis (TBM) on ART during tuberculosis (TB) treatment may increase survival in these patients. We undertook this study to describe causes of meningitis at a secondary-level hospital in a high HIV/TB co-infection setting and to determine predictors of mortality in patients with TBM.A retrospective review of cerebrospinal fluid findings and clinical records over a six-month period (March 2009-August 2009). Definite, probable and possible TBM were diagnosed according to published case definitions.TBM was diagnosed in 120/211 patients (57%) with meningitis. In 106 HIV-infected patients with TBM, six-month all-cause mortality was lower in those who received antiretroviral therapy (ART) during TB treatment; hazard ratio = 0.30 (95% CI = 0.08-0.82). Factors associated with inpatient mortality in HIV-infected patients were 1) low CD4(+) count at presentation; adjusted odds ratio (AOR) = 1.4 (95% confidence interval [CI] = 1.03-1.96) per 50 cells/µL drop in CD4(+) count and, 2) higher British Medical Research Council TBM disease grade (2 or 3 versus 1); AOR = 4.8 (95% CI = 1.45-15.87).Starting ART prior to or during TB treatment may be associated with lower mortality in patients with HIV-associated TBM. Advanced HIV and worse stage of TBM disease predict in-hospital mortality in patients presenting with TBM
    • …
    corecore