125 research outputs found

    Kinetic modeling and simulation of bio-methanol process from biogas by using aspen plus

    Get PDF
    A process of bio-methanol from biogas was studied by modifying kinetic model of reaction’s Richardson and Paripatyadar comparing with laboratory data. Bio-methanol process consists of 2 steps: reforming reaction (at atmospheric pressure, temperature 500 - 750 °C) and methanol synthesis (at constant pressure 40 bar, temperature 140 - 280 °C). The reaction model of each step was individual simulated. Next both steps were integrated, then they were simulated using ASPEN PLUS software. This work investigated the optimum operating condition and predicted result of both reactions. The developing model was obtained, then it was applied for ten thousand liters per day of methanol. The simulation result received from reforming reaction showed increasing temperature effect to rising in CH4 and CO2 conversion and relating with laboratory result. The optimum condition of methanol synthesis is temperature 200 °C under constant pressure 40 bar

    Pharmacogenomics Factors Influencing the Effect of Risperidone on Prolactin Levels in Thai Pediatric Patients With Autism Spectrum Disorder

    Get PDF
    We investigated the association between genetic variations in pharmacodynamic genes and risperidone-induced increased prolactin levels in children and adolescents with autism spectrum disorder (ASD). In a retrospective study, variants of pharmacodynamic genes were analyzed in 124 ASD patients treated with a risperidone regimen for at least 3 months. To simplify genotype interpretation, we created an algorithm to calculate the dopamine D2 receptor (DRD2) gene genetic risk score. There was no relationship between prolactin levels and single SNPs. However, the H1/H3 diplotype (A2/A2-Cin/Cin-A/G) of DRD2/ankyrin repeat and kinase domain containing 1 (ANKK1) Taq1A, DRD2 -141C indel, and DRD2 -141A>G, which had a genetic risk score of 5.5, was associated with the highest median prolactin levels (23 ng/ml). As the dose-corrected plasma levels of risperidone, 9-OH-risperidone, and the active moiety increased, prolactin levels in patients carrying the H1/H3 diplotype were significantly higher than those of the other diplotypes. DRD2 diplotypes showed significantly high prolactin levels as plasma risperidone levels increased. Lower levels of prolactin were detected in patients who responded to risperidone. This is the first system for describing DRD2 haplotypes using genetic risk scores based on their protein expression. Clinicians should consider using pharmacogenetic-based decision-making in clinical practice to prevent prolactin increase

    Exome Sequencing Identifies Compound Heterozygous Mutations in SCN5A Associated with Congenital Complete Heart Block in the Thai Population

    Get PDF
    Background. Congenital heart block is characterized by blockage of electrical impulses from the atrioventricular node (AV node) to the ventricles. This blockage can be caused by ion channel impairment that is the result of genetic variation. This study aimed to investigate the possible causative variants in a Thai family with complete heart block by using whole exome sequencing. Methods. Genomic DNA was collected from a family consisting of five family members in three generations in which one of three children in generation III had complete heart block. Whole exome sequencing was performed on one complete heart block affected child and one unaffected sibling. Bioinformatics was used to identify annotated and filtered variants. Candidate variants were validated and the segregation analysis of other family members was performed. Results. This study identified compound heterozygous variants, c.101G>A and c.3832G>A, in the SCN5A gene and c.28730C>T in the TTN gene. Conclusions. Compound heterozygous variants in the SCN5A gene were found in the complete heart block affected child but these two variants were found only in the this affected sibling and were not found in other unaffected family members. Hence, these variants in the SCN5A gene were the most possible disease-causing variants in this family

    A comparison of the radiosensitisation ability of 22 different element metal oxide nanoparticles using clinical megavoltage X-rays

    Get PDF
    Background: A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results: Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions: Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success

    Genetic Association of Co‐Trimoxazole‐Induced Severe Cutaneous Adverse Reactions Is Phenotype‐Specific: HLA Class I Genotypes and Haplotypes

    Get PDF
    Co‐trimoxazole (CTX) causes various forms of severe cutaneous adverse reactions (SCARs). This case‐control study was conducted to investigate the involvement between genetic variants of human leukocyte antigen (HLA) and CYP2C9 in CTX‐induced SCARs, including Stevens‐Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) in Thai patients. Thirty cases of CTX‐induced SCARs were enrolled and compared with 91 CTX‐tolerant controls and 150 people from the general Thai population. Cases comprised 18 SJS/TEN and 12 DRESS patients. This study demonstrated that genetic association of CTX‐induced SCARs was phenotype‐specific. HLA‐B*15:02 and HLA‐C*08:01 alleles were significantly associated with CTX‐induced SJS/TEN, whereas the HLA‐B*13:01 allele was significantly associated with CTX‐induced DRESS. In addition, a significant higher frequency of HLA‐A*11:01‐B*15:02 and HLA‐B*13:01‐C*03:04 haplotypes were detected in the group of CTX‐induced Stevens‐Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and DRESS cases, respectively. Genetic association of CTX‐induced SCARs is phenotype‐specific. Interestingly, these association was observed only in HIV‐infected patients but not in non‐HIV‐infected patients

    Solar Hydrogen Generation from Lignocellulose

    Get PDF
    Photocatalytic reforming of lignocellulosic biomass is an emerging approach to produce renewable H2 . This process combines photo-oxidation of aqueous biomass with photocatalytic hydrogen evolution at ambient temperature and pressure. Biomass conversion is less energy demanding than water splitting and generates high-purity H2 without O2 production. Direct photoreforming of raw, unprocessed biomass has the potential to provide affordable and clean energy from locally sourced materials and waste

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl
    • 

    corecore