7 research outputs found

    Comparative genomic analysis of a multidrug-resistant Staphylococcus hominis ShoR14 clinical isolate from Terengganu, Malaysia, led to the discover of novel mobile genetic elements

    Get PDF
    Staphylococcus hominis is a coagulase-negative Staphylococcus (CoNS) commensal capable of causing serious systemic infections in humans. The emergence of multidrug-resistant S. hominis strains is of concern but little is known about the characteristics of this organism, particularly from Malaysia. Here, we present the comparative genome analysis of S. hominis ShoR14, a multidrugresistant, methicillin-resistant blood isolate from Terengganu, Malaysia. Genomic DNA of S. hominis ShoR14 was sequenced on the Illumina platform and assembled using Unicycler v0.4.8. ShoR14 belonged to sequence type (ST) 1 which is the most prevalent ST of the S. hominis subsp. hominis. Comparative genomic analysis with closely related strains in the database with complete genome sequences, led to the discovery of a novel variant of the staphylococcal chromosome cassette mec (SCCmec) type VIII element harboring the mecA methicillin-resistance gene in ShoR14 and its possible carriage of a SCCfus element that encodes the fusidic acid resistance gene (fusC). Up to seven possible ShoR14 plasmid contigs were identified, three of which harbored resistance genes for tetracycline (tetK), chloramphenicol (catA7), macrolides, lincosamides, and streptogramin B (ermC). Additionally, we report the discovery of a novel mercury-resistant transposon, Tn7456, other genomic islands, and prophages which make up the S. hominis mobilome

    Complete genome sequence and analysis of a ST573 multidrug-resistant methicillin-resistant Staphylococcus aureus SauR3 clinical isolate from Terengganu, Malaysia

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is aWorld Health Organization-listed priority pathogen. Scarce genomic data are available for MRSA isolates from Malaysia. Here, we present the complete genome sequence of a multidrug-resistant MRSA strain SauR3, isolated from the blood of a 6-year-old patient hospitalized in Terengganu, Malaysia, in 2016. S. aureus SauR3 was resistant to five antimicrobial classes comprising nine antibiotics. The genome was sequenced on the Illumina and Oxford Nanopore platforms and hybrid assembly was performed to obtain its complete genome sequence. The SauR3 genome consists of a circular chromosome of 2,800,017 bp and three plasmids designated pSauR3-1 (42,928 bp), pSauR3-2 (3011 bp), and pSauR3-3 (2473 bp). SauR3 belongs to sequence type 573 (ST573), a rarely reported sequence type of the staphylococcal clonal complex 1 (CC1) lineage, and harbors a variant of the staphylococcal cassette chromosome mec (SCCmec) type V (5C2&5) element which also contains the aac(60)-aph(200) aminoglycoside-resistance genes. pSauR3-1 harbors several antibiotic resistance genes in a 14,095 bp genomic island (GI), previously reported in the chromosome of other staphylococci. pSauR3-2 is cryptic, whereas pSauR3-3 encodes the ermC gene that mediates inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB). The SauR3 genome can potentially be used as a reference genome for other ST573 isolates

    Molecular Characterization of Clinical Isolates of Aeromonas Species from Malaysia

    Get PDF
    Background: Aeromonas species are common inhabitants of aquatic environments giving rise to infections in both fish and humans. Identification of aeromonads to the species level is problematic and complex due to their phenotypic and genotypic heterogeneity. Methodology/Principal Findings: Aeromonas hydrophila or Aeromonas sp were genetically re-identified using a combination of previously published methods targeting GCAT, 16S rDNA and rpoD genes. Characterization based on the genus specific GCAT-PCR showed that 94 (96%) of the 98 strains belonged to the genus Aeromonas. Considering the patterns obtained for the 94 isolates with the 16S rDNA-RFLP identification method, 3 clusters were recognised, i.e. A. caviae (61%), A. hydrophila (17%) and an unknown group (22%) with atypical RFLP restriction patterns. However, the phylogenetic tree constructed with the obtained rpoD sequences showed that 47 strains (50%) clustered with the sequence of the type strain of A. aquariorum, 18 (19%) with A. caviae, 16 (17%) with A. hydrophila, 12 (13%) with A. veronii and one strain (1%) with the type strain of A. trota. PCR investigation revealed the presence of 10 virulence genes in the 94 isolates as: lip (91%), exu (87%), ela (86%), alt (79%), ser (77%), fla (74%), aer (72%), act (43%), aexT (24%) and ast (23%). Conclusions/Significance: This study emphasizes the importance of using more than one method for the correct identification of Aeromonas strains. The sequences of the rpoD gene enabled the unambiguous identication of the 9

    The Plasmidomic Landscape of Clinical Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates from Malaysia

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1–4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen
    corecore