40 research outputs found

    A fine map for maternal lineage analysis by mitochondrial hypervariable region in 12 Chinese goat breeds

    No full text
    As the fast pace of genomic research continues to identify mitochondrial lineages in animals, it has become apparent that many independent studies are needed to support a robust phylogenetic inference. The aim of this study was thus to further characterize the maternal lineage, proposed to originate in southwestern region of China, using a wider survey of diverse goat breeds in China. To this end, we sequenced the mitochondrial hypervariable region 1 (HVR1) of the mtDNA control region in 145 goats of 12 Chinese breeds. Phylogenetic analysis revealed that Chinese goats were classified into four distinct lineages (A, B, C and D) as previously reported. A Mantel test and the analysis of Analysis of Molecular Variance (ANOVA) indicated that there was not an obvious geographic structure among Chinese goat breeds. Population expansion analysis based on mismatch distribution and Fu's Fs statistic indicate that two expansion events in Chinese goats occurred respectively at about 11 and 29 mutational time units ago, revealing two star-like subclades in lineage B corresponding to two population expansion events. Moreover, lineage B sequences were presented only in the breeds of southwestern or surrounding regions of China. Multiple lines of evidence from this study and previous studies indicate that for Chinese goats mtDNA lineage B originated from the southwestern region of China

    Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats

    No full text
    Most cashmere goats are found in northern China and Mongolia. They are regarded as precious resources for their production of high quality natural fibre for the textile industry. It was the first time that the genetic diversity and population structure of nine Chinese cashmere populations has been assessed using 14 ISAG/FAO microsatellite markers. In addition, two Iranian populations and one West African goat population were genotyped for comparison. Results indicated that the genetic diversity of Chinese cashmere goats was rich, but less than those of the Iranian goat populations. All pairwise FST values between the Chinese cashmere goat populations reached a highly significant level (P < 0.001), suggesting that they should all be considered as separate breeds. Finally, clustering analysis divided Chinese cashmere goats into at least two clusters, with the Tibetan Hegu goats alone in one cluster. An extensive admixture was detected among the Chinese goat breeds (except the Hegu), which have important implications for breeding management

    Evaluation of the genetic diversity and population structure of Chinese indigenous horse breeds using 27 microsatellite markers

    No full text
    We determined the genetic diversity and evolutionary relationships among 26 Chinese indigenous horse breeds and two introduced horse breeds by genotyping these animals for 27 microsatellite loci. The 26 Chinese horse breeds come from 12 different provinces. Two introduced horse breeds were the Mongolia B Horse from Mongolia and the Thoroughbred Horse from the UK. A total of 330 alleles were detected, and the expected heterozygosity ranged from 0.719 (Elenchuns) to 0.780 (Dali). The mean number of alleles among the horse breeds ranged from 6.74 (Hequ) to 8.81 (Debao). Although there were abundant genetic variations found, the genetic differentiation was low between the Chinese horses, which displayed only 2.4% of the total genetic variance among the different breeds. However, genetic differentiation (pairwise FST) among Chinese horses, although moderate, was still apparent and varied from 0.001 for the Guizou–Luoping pair to 0.064 for the Jingjiang–Elenchuns pair. The genetic differentiation patterns and genetic relationships among Chinese horse breeds were also consistent with their geographical distribution. The Thoroughbred and Mongolia B breeds could be discerned as two distinct breeds, but the Mongolia B horse in particular suffered genetic admixture with Chinese horses. The Chinese breeds could be divided into five major groups, i.e. the south or along the Yangtze river group (Bose, Debao, Wenshan, Lichuan, Jianchang, Guizhou, Luoping, Jinjiang and Dali), the Qinghai-Tibet Plateau group (Chaidamu, Hequ, Datong, Yushu, Tibet Grassland and Tibet Valley), the Northeast of China group (Elenchuns, Jilin and Heihe), the Northwest of China group (Kazakh, Yili and Yanqi) and the Inner Mongolia group (Mongolia A, Sanhe, Xinihe,Wuzhumuqin and Sengeng). This grouping pattern was further supported by principal component analysis and structure analysis

    Monitoring Wheat Stripe Rust Using Remote Sensing Technologies in China

    No full text
    Part 1: Simulation, Optimization, Monitoring and Control TechnologyInternational audienceMany studies on remote sensing monitoring of plant diseases have been conducted. Remote sensing (RS) has played an important role in monitoring some kinds of plant diseases and making decisions for the management of the diseases. Progress on remote sensing monitoring of wheat stripe rust in China was summarized from four aspects including remote sensing monitoring stripe rust of single wheat leaves and monitoring this disease using ground, aerial and space remote sensing technologies. The phenomena of same object with different spectra and different objects with same spectrum, the lowest threshold of disease prevalence for remote sensing monitoring, the spectral information distilling technologies, and the methods to develop inversion models based on spectral information were also discussed. Moreover, the development trends of multi-pest remote sensing, space remote sensing and integrated utilization of RS, geographical information system (GIS) and global positioning system (GPS) in monitoring wheat stripe rust were prospected
    corecore