21 research outputs found

    {2-(4-Hy­droxy­phen­yl)-2-[(3-meth­oxy-2-oxidobenzyl­idene)amino-κ2 O 2,N]propanoato-κO}(1,10-phenanthroline-κ2 N,N′)copper(II) dihydrate

    Get PDF
    In the title complex, [Cu(C17H15NO5)(C12H8N2)]·2H2O, the central CuII ion is five-coordinate, bound to one N atom and two O atoms from the Schiff base ligand and by two N atoms from a 1,10-phenanthroline ligand in a distorted square-pyramidal configuration. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds form a two-dimensional network parallel to (001)

    The crystal structure of [1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one], C16H12F3NO

    No full text
    C16H12F3NO, orthorhombic, P212121 (no. 19), a = 6.9928(6) Å, b = 8.9764(8) Å, c = 21.216(2) Å, V = 1331.7(2) Å3, Z = 2, Rgt(F) = 0.0583, wRref(F2) = 0.1552, T = 298 K

    Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods

    No full text
    Organic acids could improve the food flavor, maintain the nutritional value, and extend the shelf life of food. This review summarizes the detection methods and concentrations of organic acids in different foods, as well as their taste characteristics and nutritional properties. The composition of organic acids varies in different food. Fruits and vegetables often contain citric acid, creatine is a unique organic acid found in meat, fermented foods have a high content of acetic acid, and seasonings have a wide range of organic acids. Determination of the organic acid contents among different food matrices allows us to monitor the sensory properties, origin identification, and quality control of foods, and further provides a basis for food formulation design. The taste characteristics and the acid taste perception mechanisms of organic acids have made some progress, and binary taste interaction is the key method to decode multiple taste perception. Real food and solution models elucidated that the organic acid has an asymmetric interaction effect on the other four basic taste attributes. In addition, in terms of nutrition and health, organic acids can provide energy and metabolism regulation to protect the human immune and myocardial systems. Moreover, it also exhibited bacterial inhibition by disrupting the internal balance of bacteria and inhibiting enzyme activity. It is of great significance to clarify the synergistic dose-effect relationship between organic acids and other taste sensations and further promote the application of organic acids in food salt reduction

    Flavor and Functional Analysis of Lactobacillus plantarum Fermented Apricot Juice

    No full text
    The small white apricot is a juicy, delicious fruit with a short shelf life. Slight fermentation can significantly promote the flavors and nutrient value of apricot juice. This study used high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC-MS) to examine the physicochemical properties, nutritive value and flavor substances of apricot juice fermented by Lactobacillus plantarum LP56. Fermentation significantly increased lactic acid bacteria (LAB) and their product lactic acid, adding probiotic benefits to fermented apricot juice. In addition, the total phenolic compounds and antioxidant capacity increased, while the levels of soluble solids and organic acids decreased. Gallic acid, 3-caffeoylquinic acid and rutin mainly contributed to the antioxidant activity of fermented apricot juice. Alcohols, aldehyde, acid, ester, etc., were the main volatile compounds. Among the flavors, 12 substances with high odor activity values (OAV > 1) were the key aroma-producing compounds with fruit, pine and citrus flavors. In conclusion, this study shows that L. plantarum LP56 fermentation can improve the nutritional value and aroma characteristics of apricot juice

    Adjustment of impact phenolic compounds, antioxidant activity and aroma profile in Cabernet Sauvignon wine by mixed fermentation of Pichia kudriavzevii and Saccharomyces cerevisiae

    No full text
    Mixed fermentation using saccharomyces cerevisiae and non-saccharomyces cerevisiae has become one of the main research strategies to improve wine aroma. Hence, this study applied the mixed fermentation technique using Pichia kudriavzevii and Saccharomyces cerevisiae to brew Cabernet Sauvignon wine and to investigate the effects of inoculation timing and inoculation ratio on the polyphenolics, antioxidant activity and aroma of the resulting wine. The results showed that mixed fermentation significantly improved the amounts of flavan-3-ols. In particular, S1:5 had the highest amounts of (-)-catechin and procyanidin B1 (73.23 mg/L and 46.59 mg/L), while S1:10 had the highest (-)-epicatechin content (57.95 mg/L). Meanwhile, S1:10 showed the strongest FRAP, CUPRAC and ABTS + activities (31.46 %, 25.38 % and 13.87 % higher than that of CK, respectively). In addition, mixed fermentation also increased the amounts of phenylethanol, isoamyl alcohol and ethyl esters, which enhanced the rose-like and fruity flavor of wine. This work used a friendly non-saccharomyces cerevisiae alongside appropriate inoculation strategies to provide an alternative approach for improved wine aroma and phenolic profile

    Estimation of Growth Curves and Suitable Slaughter Weight of the Liangshan Pig

    No full text
    The Liangshan pig is a traditional Chinese small-sized breed; it has a relatively long feeding period and low meat production ability but superior meat quality. This study utilized three non-linear growth models (Von Bertalanffy, Gompertz, and logistic) to fit the growth curve of Liangshan pigs from an unselected, random-bred pig population and estimate the pigs most suitable slaughter weight. The growth development data at 20 time points of 275 Liangshan pigs (from birth to 250 d) were collected. To analyze the relative gene expression related to development, seven slaughter weight phases (50, 58, 66, 74, 82, 90, and 98 kg) (20 pigs per phase) were examined. We found that the Liangshan pig growth curve fit the typical S-curve well and that their growth turning point was 193.4 days at a weight of 62.5 kg, according to the best fit Von Bertalanffy model based on the goodness of fit criteria. Furthermore, we estimated that the most suitable slaughter weight was 62.5 to 74.9 kg based on the growth curve and the relative expression levels of growth-related genes

    miR-145a-5p Promotes Myoblast Differentiation

    No full text
    MicroRNAs are a class of 18–22-nucleotide noncoding RNAs that posttranscriptionally regulate gene expression and have been shown to play an important role during myoblast differentiation. In this study, we found that the expression of miR-145a-5p was gradually increased during C2C12 myoblast differentiation, and miR-145a-5p inhibitors or mimics significantly suppressed or promoted the relative expression of specific myogenesis related marker genes. Moreover, overexpression or inhibition of miR-145a-5p enhanced or repressed the expression of some special genes involved in the endogenous Wnt signaling pathway during C2C12 myoblast differentiation, including Wnt5a, LRP5, Axin2, and β-catenin. These results indicated that miR-145a-5p might be considered as a new myogenic differentiation-associated microRNA that can promote C2C12 myoblast differentiation by enhancing genes related to myoblasts differentiation
    corecore