185 research outputs found

    Genotyping isolates of the entomopathogenic fungus Beauveria bassiana sensu lato by multi-locus polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis

    Get PDF
    Multi-locus denaturing gradient gel electrophoresis (DGGE) analysis was developed to investigate the genotypes of Beauveria bassiana sensu lato. Sensitive tests indicated all isolates with one or more nucleotide differences at EF-1 and Bloc could be distinguished by DGGE except for one pair of strains that differed at four nucleotide positions. Ten, twelve and five genotypes were identified at the EF-1, Bloc and ITS locus, respectively, among seventeen isolates, which together differentiated 13 genotypes. These results demonstrated that multi-locus DGGE is a potentially useful molecular marker for genotyping, identifying and tracking the fates of experimentally released strains of B. bassiana sensu lato. Moreover, by multi-locus DGGE for scanning B. bassiana sensu lato isolates with different multilocus sequences, genetic diversity of B. bassiana sensu lato was effectively investigated with substantially reduced time and cost in subsequent DNA sequencing

    Two fundamentally different drivers of dipolarizations at Saturn

    Get PDF
    Solar wind energy is transferred to planetary magnetospheres via magnetopause reconnection, driving magnetospheric dynamics. At giant planets like Saturn, rapid rotation and internal plasma sources from geologically active moons also drive magnetospheric dynamics. In both cases, magnetic energy is regularly released via magnetospheric current redistributions that usually result in a change of the global magnetic field topology (named substorm dipolarization at Earth). Besides this substorm dipolarization, the front boundary of the reconnection outflow can also lead to a strong but localized magnetic dipolarization, named a reconnection front. The enhancement of the north-south magnetic component is usually adopted as the indicator of magnetic dipolarization. However, this field increase alone cannot distinguish between the two fundamentally different mechanisms. Using measurements from Cassini, we present multiple cases whereby we identify the two distinct types of dipolarization at Saturn. A comparison between Earth and Saturn provides new insight to revealing the energy dissipation in planetary magnetospheres

    Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause

    Get PDF
    Magnetic flux transfer events (FTEs) are signatures of unsteady magnetic reconnection, often observed at planetary magnetopauses. Their generation mechanism, a key ingredient determining how they regulate the transfer of solar wind energy into magnetospheres, is still largely unknown. We report THEMIS spacecraft observations on 2007-06-14 of an FTE generated by multiple X-line reconnection at the dayside magnetopause. The evidence consists of (1) two oppositely-directed ion jets converging toward the FTE that was slowly moving southward, (2) the cross-section of the FTE core being elongated along the magnetopause normal, probably squeezed by the oppositely-directed jets, and (3) bidirectional field-aligned fluxes of energetic electrons in the magnetosheath, indicating reconnection on both sides of the FTE. The observations agree well with a global magnetohydrodynamic model of the FTE generation under large geomagnetic dipole tilt, which implies the efficiency of magnetic flux transport into the magnetotail being lower for larger dipole tilt

    Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study

    Get PDF
    The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at ∼(‐60, 0, ‐5) RE in Geocentric Solar Ecliptic coordinate in the deep magnetotail. Approximately 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun‐Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X‐Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind VY effects. The results from two different global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general

    A Rotating Azimuthally Distributed Auroral Current System on Saturn Revealed by the Cassini Spacecraft

    Get PDF
    Stunning aurorae are mainly produced when accelerated electrons travel along magnetic field lines to collide with the atmosphere. The motion of electrons often corresponds to the evolution of a magnetic field-aligned current system. In the terrestrial magnetosphere, the current system is formed at the night-side sector, and thus produces an auroral bulge at night. Due to the different energy sources between Saturn and the Earth, it is expected that their auroral current systems are fundamentally different, although the specific auroral driver at Saturn is poorly understood. Using simultaneous measurements of the aurora, particles, magnetic fields, and energetic neutral atoms, we reveal that a chain of paired currents, each of which includes a downward and an upward current branch, is formed in Saturn's magnetosphere, which generates separated auroral patches. These findings inform similar auroral current structures between the Earth and Saturn, while the difference is that Saturn's unique mass and energy sources lead to a rotational characteristic

    Infective endocarditis with Lactococcus garvieae in Japan: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Lactococcus garvieae </it>is a well-recognized fish pathogen, and it is considered a rare pathogen with low virulence in human infection. We describe the 11th case of <it>L. garvieae </it>infective endocarditis reported in the literature, and the first reported case in Japan.</p> <p>Case presentation</p> <p>We report a case of a 55-year-old Japanese woman who had native valve endocarditis with <it>L. garvieae</it>. The case was complicated by renal infarction, cerebral infarction, and mycotic aneurysms. After anti-microbial treatment, she was discharged from the hospital and is now well while being monitored in the out-patient clinic.</p> <p>Conclusion</p> <p>We encountered a case of <it>L. garvieae </it>endocarditis that occurred in a native valve of a healthy woman. The 16S ribosomal RNA gene sequencing was useful for the identification of this pathogen. Although infective endocarditis with <it>L. garvieae </it>is uncommon, it is possible to treat high virulence clinically.</p

    Current reduction in a pseudo-breakup event: THEMIS observations

    Get PDF
    Pseudo-breakup events are thought to be generated by the same physical processes as substorms. This paper reports on the cross-tail current reduction in an isolated pseudo-breakup observed by three of the THEMIS probes (THEMIS A (THA), THEMIS D (THD), and THEMIS E (THE)) on 22 March 2010. During this pseudo-breakup, several localized auroral intensifications were seen by ground-based observatories. Using the unique spatial configuration of the three THEMIS probes, we have estimated the inertial and diamagnetic currents in the near-Earth plasma sheet associated with flow braking and diversion. We found the diamagnetic current to be the major contributor to the current reduction in this pseudo-breakup event. During flow braking, the plasma pressure was reinforced, and a weak electrojet and an auroral intensification appeared. After flow braking/diversion, the electrojet was enhanced, and a new auroral intensification was seen. The peak current intensity of the electrojet estimated from ground-based magnetometers, ~0.7 × 105 A, was about 1 order of magnitude lower than that in a typical substorm. We suggest that this pseudo-breakup event involved two dynamical processes: a current-reduction associated with plasma compression ahead of the earthward flow and a current-disruption related to the flow braking/diversion. Both processes are closely connected to the fundamental interaction between fast flows, the near-Earth ambient plasma, and the magnetic field

    Boundary layer plasma flows from high-latitude reconnection in the summer hemisphere for northward IMF: THEMIS multi-point observations

    Get PDF
    On 2008-07-11, the THEMIS spacecraft, separated both longitudinally and radially, traversed the dayside low-latitude boundary layer (LLBL) under extended northward IMF. They detected southward flows of magnetosheath plasma from magnetopause reconnection poleward of the northern cusp, which were cold-dense, and had southward velocity similar to 100 km/s and longitudinal extent >3 R-E. These features all agree with a global MHD simulation of the magnetosphere for similar conditions, in which under large geomagnetic dipole tilt, an LLBL forms via poleward-of-the-cusp reconnection first in the summer hemisphere and later in the other. Contrary to the simulation, however, the observed LLBL was mostly magnetically closed, characterized by balanced field-aligned and anti-field-aligned electron fluxes, and was less thick (<= 0.5 R-E). The former suggests comparable reconnection rate in both hemispheres, while the latter suggests the actual reconnection rate being lower, and/or the plasma transport toward the magnetotail being faster, than in the simulation. Citation: Hasegawa, H., et al. (2009), Boundary layer plasma flows from high-latitude reconnection in the summer hemisphere for northward IMF: THEMIS multi-point observations, Geophys. Res. Lett., 36, L15107, doi: 10.1029/2009GL039410

    TC-1 observations of flux pileup and dipolarization-associated expansion in the near-Earth magnetotail during substorms

    Get PDF
    Fifty-three substorms measured by Double Star/TC-1 in the near-Earth magnetotail from July to October, 2004 are studied. The main features of these events are: (a) Magnetic flux pileup characterized by continuous enhancement of B z is observed, which starts almost simultaneously with aurora breakup within 1–3 minutes, indicating that substorm onset is in close relation to flux pileup. (b) Sudden plasma sheet expansion with sharp increases in ion temperature and density is seen in all events, which occurs typically ∼11 minutes after the beginning of pileup. The plasma sheet expansion is shown to be in close relation with the primary substorm dipolarization and, hence, can be referred to as ‘dipolarization-associated expansion’. (c) Evidence indicates that the substorm current wedge first forms earthward of TC-1 position and, hence, inward of the flow braking region, and then propagates tailward with an expansion in the Z-direction. Possible implications of these observations are briefly discussed
    corecore