24 research outputs found
Very large G protein-coupled receptor 1 regulates myelin-associated glycoprotein via Gαs/Gαq-mediated protein kinases A/C.
VLGR1 (very large G protein-coupled receptor 1), also known as MASS1 (monogenic audiogenic seizure susceptible 1), is an orphan G protein-coupled receptor that contains a large extracellular N terminus with 35 calcium-binding domains. A truncating mutation in the Mass1 gene causes autosomal recessive, sound-induced seizures in the Frings mouse. However, the function of MASS1 and the mechanism underlying Frings mouse epilepsy are not known. Here, we found that MASS1 protein is enriched in the myelinated regions of the superior and inferior colliculi, critical areas for the initiation and propagation of audiogenic seizures. Using a panel of myelin antibodies, we discovered that myelin-associated glycoprotein (MAG) expression is dramatically decreased in Frings mice. MASS1 inhibits the ubiquitylation of MAG, thus enhancing the stability of this protein, and the calcium-binding domains of MASS1 are essential for this regulation. Furthermore, MASS1 interacts with Gαs/Gαq and activates PKA and PKC in response to extracellular calcium. Suppression of signaling by MASS1 RNAi or a specific inhibitor abrogates MAG up-regulation. We postulate that MASS1 senses extracellular calcium and activates cytosolic PKA/PKC pathways to regulate myelination by means of MAG protein stability in myelin-forming cells of the auditory pathway. Further work is required to determine whether MAG dysregulation is a cause or consequence of audiogenic epilepsy and whether there are other pathways regulated by MASS1
Recommended from our members
An inwardly rectifying K+ channel is required for patterning.
Mutations that disrupt function of the human inwardly rectifying potassium channel KIR2.1 are associated with the craniofacial and digital defects of Andersen-Tawil Syndrome, but the contribution of Kir channels to development is undefined. Deletion of mouse Kir2.1 also causes cleft palate and digital defects. These defects are strikingly similar to phenotypes that result from disrupted TGFβ/BMP signaling. We use Drosophila melanogaster to show that a Kir2.1 homolog, Irk2, affects development by disrupting BMP signaling. Phenotypes of irk2 deficient lines, a mutant irk2 allele, irk2 siRNA and expression of a dominant-negative Irk2 subunit (Irk2DN) all demonstrate that Irk2 function is necessary for development of the adult wing. Compromised Irk2 function causes wing-patterning defects similar to those found when signaling through a Drosophila BMP homolog, Decapentaplegic (Dpp), is disrupted. To determine whether Irk2 plays a role in the Dpp pathway, we generated flies in which both Irk2 and Dpp functions are reduced. Irk2DN phenotypes are enhanced by decreased Dpp signaling. In wild-type flies, Dpp signaling can be detected in stripes along the anterior/posterior boundary of the larval imaginal wing disc. Reducing function of Irk2 with siRNA, an irk2 deletion, or expression of Irk2DN reduces the Dpp signal in the wing disc. As Irk channels contribute to Dpp signaling in flies, a similar role for Kir2.1 in BMP signaling may explain the morphological defects of Andersen-Tawil Syndrome and the Kir2.1 knockout mouse
MicroRNA-23a promotes myelination in the central nervous system.
Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a-overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a. Additionally, a long noncoding RNA, 2700046G09Rik, was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a-dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin
Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability.
Paroxysmal non-kinesigenic dyskinesia (PNKD) is a rare autosomal dominant movement disorder triggered by stress, fatigue or consumption of either alcohol or caffeine. Attacks last 1-4 h and consist of dramatic dystonia and choreoathetosis in the limbs, trunk and face. The disease is associated with single amino acid changes (A7V or A9V) in PNKD, a protein of unknown function. Here we studied the stability, cellular localization and enzymatic activity of the PNKD protein in cultured cells and transgenic animals. The N-terminus of the wild-type (WT) long PNKD isoform (PNKD-L) undergoes a cleavage event in vitro, resistance to which is conferred by disease-associated mutations. Mutant PNKD-L protein is degraded faster than the WT protein. These results suggest that the disease mutations underlying PNKD may disrupt protein processing in vivo, a hypothesis supported by our observation of decreased cortical Pnkd-L levels in mutant transgenic mice. Pnkd is homologous to a superfamily of enzymes with conserved β-lactamase domains. It shares highest homology with glyoxalase II but does not catalyze the same reaction. Lower glutathione levels were found in cortex lysates from Pnkd knockout mice versus WT littermates. Taken together, our results suggest an important role for the Pnkd protein in maintaining cellular redox status
p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks.
The p75 neurotrophin receptor (p75(NTR)) is a member of the tumor necrosis factor receptor superfamily with a widespread pattern of expression in tissues such as the brain, liver, lung, and muscle. The mechanisms that regulate p75(NTR) transcription in the nervous system and its expression in other tissues remain largely unknown. Here we show that p75(NTR) is an oscillating gene regulated by the helix-loop-helix transcription factors CLOCK and BMAL1. The p75(NTR) promoter contains evolutionarily conserved noncanonical E-box enhancers. Deletion mutagenesis of the p75(NTR)-luciferase reporter identified the -1039 conserved E-box necessary for the regulation of p75(NTR) by CLOCK and BMAL1. Accordingly, gel-shift assays confirmed the binding of CLOCK and BMAL1 to the p75(NTR-)1039 E-box. Studies in mice revealed that p75(NTR) transcription oscillates during dark and light cycles not only in the suprachiasmatic nucleus (SCN), but also in peripheral tissues including the liver. Oscillation of p75(NTR) is disrupted in Clock-deficient and mutant mice, is E-box dependent, and is in phase with clock genes, such as Per1 and Per2. Intriguingly, p75(NTR) is required for circadian clock oscillation, since loss of p75(NTR) alters the circadian oscillation of clock genes in the SCN, liver, and fibroblasts. Consistent with this, Per2::Luc/p75(NTR-/-) liver explants showed reduced circadian oscillation amplitude compared with those of Per2::Luc/p75(NTR+/+). Moreover, deletion of p75(NTR) also alters the circadian oscillation of glucose and lipid homeostasis genes. Overall, our findings reveal that the transcriptional activation of p75(NTR) is under circadian regulation in the nervous system and peripheral tissues, and plays an important role in the maintenance of clock and metabolic gene oscillation
Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia.
Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder. Patients have episodes that last 1 to 4 hours and are precipitated by alcohol, coffee, and stress. Previous research has shown that mutations in an uncharacterized gene on chromosome 2q33-q35 (which is termed PNKD) are responsible for PNKD. Here, we report the generation of antibodies specific for the PNKD protein and show that it is widely expressed in the mouse brain, exclusively in neurons. One PNKD isoform is a membrane-associated protein. Transgenic mice carrying mutations in the mouse Pnkd locus equivalent to those found in patients with PNKD recapitulated the human PNKD phenotype. Staining for c-fos demonstrated that administration of alcohol or caffeine induced neuronal activity in the basal ganglia in these mice. They also showed nigrostriatal neurotransmission deficits that were manifested by reduced extracellular dopamine levels in the striatum and a proportional increase of dopamine release in response to caffeine and ethanol treatment. These findings support the hypothesis that the PNKD protein functions to modulate striatal neuro-transmitter release in response to stress and other precipitating factors
PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine.
OBJECTIVE: Whole genome sequencing and the screening of 103 families recently led us to identify PRRT2 (proline-rich-transmembrane protein) as the gene causing infantile convulsions (IC) with paroxysmal kinesigenic dyskinesia (PKD) (PKD/IC syndrome, formerly ICCA). There is interfamilial and intrafamilial variability and the patients may have IC or PKD. Association of IC with hemiplegic migraine (HM) has also been reported. In order to explore the mutational and clinical spectra, we analyzed 34 additional families with either typical PKD/IC or PKD/IC with migraine.
METHODS: We performed Sanger sequencing of all PRRT2 coding exons and of exon-intron boundaries in the probands and in their relatives whenever appropriate.
RESULTS: Two known and 2 novel PRRT2 mutations were detected in 18 families. The p.R217Pfs*8 recurrent mutation was found in ≈50% of typical PKD/IC, and the unreported p.R145Gfs*31 in one more typical family. PRRT2 mutations were also found in PKD/IC with migraine: p.R217Pfs*8 cosegregated with PKD associated with HM in one family, and was also detected in one IC patient having migraine with aura, in related PKD/IC familial patients having migraine without aura, and in one sporadic migraineur with abnormal MRI. Previously reported p.R240X was found in one patient with PKD with migraine without aura. The novel frameshift p.S248Afs*65 was identified in a PKD/IC family member with IC and migraine with aura.
CONCLUSIONS: We extend the spectrum of PRRT2 mutations and phenotypes to HM and to other types of migraine in the context of PKD/IC, and emphasize the phenotypic pleiotropy seen in patients with PRRT2 mutationsjournal articleresearch support, non-u.s. gov't2012 Nov 202012 10 17importedComment in : Paroxysmal disorders associated with PRRT2 mutations shake up expectations on ion channel genes. [Neurology. 2012
Recommended from our members
Very large G protein-coupled receptor 1 regulates myelin-associated glycoprotein via Gαs/Gαq-mediated protein kinases A/C.
VLGR1 (very large G protein-coupled receptor 1), also known as MASS1 (monogenic audiogenic seizure susceptible 1), is an orphan G protein-coupled receptor that contains a large extracellular N terminus with 35 calcium-binding domains. A truncating mutation in the Mass1 gene causes autosomal recessive, sound-induced seizures in the Frings mouse. However, the function of MASS1 and the mechanism underlying Frings mouse epilepsy are not known. Here, we found that MASS1 protein is enriched in the myelinated regions of the superior and inferior colliculi, critical areas for the initiation and propagation of audiogenic seizures. Using a panel of myelin antibodies, we discovered that myelin-associated glycoprotein (MAG) expression is dramatically decreased in Frings mice. MASS1 inhibits the ubiquitylation of MAG, thus enhancing the stability of this protein, and the calcium-binding domains of MASS1 are essential for this regulation. Furthermore, MASS1 interacts with Gαs/Gαq and activates PKA and PKC in response to extracellular calcium. Suppression of signaling by MASS1 RNAi or a specific inhibitor abrogates MAG up-regulation. We postulate that MASS1 senses extracellular calcium and activates cytosolic PKA/PKC pathways to regulate myelination by means of MAG protein stability in myelin-forming cells of the auditory pathway. Further work is required to determine whether MAG dysregulation is a cause or consequence of audiogenic epilepsy and whether there are other pathways regulated by MASS1
Recommended from our members
COL25A1 triggers and promotes Alzheimer's disease-like pathology in vivo.
Collagen XXV alpha 1 (COL25A1) is a collagenous type II transmembrane protein purified from senile plaques of Alzheimer's disease (AD) brains. COL25A1 alleles have been associated with increased risk for AD in a Swedish population. COL25A1 is specifically expressed in neurons and binds to aggregated Abeta in vitro. However, its contribution to the pathogenesis of AD and in vivo function are unknown. Here, we report that over-expression of COL25A1 in transgenic mice increases p35/p25 and beta-site APP-cleaving enzyme 1 (BACE1) levels, facilitates intracellular aggregation and extracellular matrix deposits of Abeta, and causes synaptophysin loss and astrocyte activation. COL25A1 mice displayed reduced anxiety-like behavior in elevated plus maze and open field tests and significantly slower swimming speed in Morris water maze. In stable cell lines, motifs in noncollagenous domains of COL25A1 were important for the induction of BACE1 expression. These findings demonstrate that COL25A1 leads to AD-like pathology in vivo. Modulation of COL25A1 function may represent an alternative therapeutic intervention for AD