33 research outputs found

    Artemisia annua extracts, artemisinin and 1,8-cineole, prevent fruit infestation by a major, cosmopolitan pest of apples

    Get PDF
    Context: Extracts of Artemisia annua (L.) (Asteraceae) and artemisinins are used for treatment of malaria, parasitic infections and have potent anticancer properties in cell lines. Eucalyptus oil and 1,8-cineole have antimicrobial, immune-stimulatory, anti-inflammatory, antioxidant, analgesic, and spasmolytic effects. Codling moth, Cydia pomonella, (L.) (Tortricidae), is a major cosmopolitan pest of the apple, potentially causing damage translating to 40 billion US dollars per year, globally. Currently used control measures are either hazardous to agricultural workers and harmful to environment, or ineffective. The potential of plant-derived semiochemicals for codling moth control is heavily understudied. Objective: This study evaluated the potential of A. annua extracts, and two chemicals that this plant contains, artemisinin and 1,8-cineole, for preventing apple feeding and infestation by neonate Cydia pomonella larvae. Methods: We studied effects of A. annua extracts, artemisinin and 1,8-cineole on apple infestation by neonate codling moth larvae using fruit choice assay in laboratory experiments. Preference of fruit treated with test solutions versus fruit treated with solvent was recorded and analyzed. Results: Crude A. annua extracts prevented fruit feeding at 1, 3, and 10 mg/ml. Artemisinin had feeding deterrent effects at 10 and 30 mg/ml, and 1,8-cineole at 100 and 300 mg/ml. Discussion and Conclusions: A. annua contains chemicals that prevent apple infestation by codling moth neonates. Artemisinin and 1,8-cineole are among them, but there are other, polar constituents of A. annua, which have similar effects. There is a potential of using our findings in codling moth control and production of codling moth-resistant apples

    Quantitative CT radiomics-based models for prediction of haematoma expansion and poor functional outcome in primary intracerebral haemorrhage

    Get PDF
    Objectives: To test radiomics-based features extracted from noncontrast CT of patients with spontaneous intracerebral haemorrhage for prediction of haematoma expansion and poor functional outcome and compare them with radiological signs and clinical factors.Materials and methods: Seven hundred fifty-four radiomics-based features were extracted from 1732 scans derived from the TICH-2 multicentre clinical trial. Features were harmonised and a correlation-based feature selection was applied. Different elastic-net parameterisations were tested to assess the predictive performance of the selected radiomics-based features using grid optimisation. For comparison, the same procedure was run using radiological signs and clinical factors separately. Models trained with radiomics-based features combined with radiological signs or clinical factors were tested. Predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC) score.Results: The optimal radiomics-based model showed an AUC of 0.693 for haematoma expansion and an AUC of 0.783 for poor functional outcome. Models with radiological signs alone yielded substantial reductions in sensitivity. Combining radiomics-based features and radiological signs did not provide any improvement over radiomics-based features alone. Models with clinical factors had similar performance compared to using radiomics-based features, albeit with low sensitivity for haematoma expansion. Performance of radiomics-based features was boosted by incorporating clinical factors, with time from onset to scan and age being the most important contributors for haematoma expansion and poor functional outcome prediction, respectively.Conclusion: Radiomics-based features perform better than radiological signs and similarly to clinical factors on the prediction of haematoma expansion and poor functional outcome. Moreover, combining radiomics-based features with clinical factors improves their performance.Key points: Linear models based on CT radiomics-based features perform better than radiological signs on the prediction of haematoma expansion and poor functional outcome in the context of intracerebral haemorrhage. Linear models based on CT radiomics-based features perform similarly to clinical factors known to be good predictors. However, combining these clinical factors with radiomics-based features increases their predictive performance

    Automated segmentation of haematoma and perihaematomal oedema in MRI of acute spontaneous intracerebral haemorrhage

    Get PDF
    BackgroundSpontaneous intracerebral haemorrhage (SICH) is a common condition with high morbidity and mortality. Segmentation of haematoma and perihaematoma oedema on medical images provides quantitative outcome measures for clinical trials and may provide important markers of prognosis in people with SICH.MethodsWe take advantage of improved contrast seen on magnetic resonance (MR) images of patients with acute and early subacute SICH and introduce an automated algorithm for haematoma and oedema segmentation from these images. To our knowledge, there is no previously proposed segmentation technique for SICH that utilises MR images directly. The method is based on shape and intensity analysis for haematoma segmentation and voxel-wise dynamic thresholding of hyper-intensities for oedema segmentation.ResultsUsing Dice scores to measure segmentation overlaps between labellings yielded by the proposed algorithm and five different expert raters on 18 patients, we observe that our technique achieves overlap scores that are very similar to those obtained by pairwise expert rater comparison. A further comparison between the proposed method and a state-of-the-art Deep Learning segmentation on a separate set of 32 manually annotated subjects confirms the proposed method can achieve comparable results with very mild computational burden and in a completely training-free and unsupervised way.ConclusionOur technique can be a computationally light and effective way to automatically delineate haematoma and oedema extent directly from MR images. Thus, with increasing use of MR images clinically after intracerebral haemorrhage this technique has the potential to inform clinical practice in the future

    Retention of Memory through Metamorphosis: Can a Moth Remember What It Learned As a Caterpillar?

    Get PDF
    Insects that undergo complete metamorphosis experience enormous changes in both morphology and lifestyle. The current study examines whether larval experience can persist through pupation into adulthood in Lepidoptera, and assesses two possible mechanisms that could underlie such behavior: exposure of emerging adults to chemicals from the larval environment, or associative learning transferred to adulthood via maintenance of intact synaptic connections. Fifth instar Manduca sexta caterpillars received an electrical shock associatively paired with a specific odor in order to create a conditioned odor aversion, and were assayed for learning in a Y choice apparatus as larvae and again as adult moths. We show that larvae learned to avoid the training odor, and that this aversion was still present in the adults. The adult aversion did not result from carryover of chemicals from the larval environment, as neither applying odorants to naïve pupae nor washing the pupae of trained caterpillars resulted in a change in behavior. In addition, we report that larvae trained at third instar still showed odor aversion after two molts, as fifth instars, but did not avoid the odor as adults, consistent with the idea that post-metamorphic recall involves regions of the brain that are not produced until later in larval development. The present study, the first to demonstrate conclusively that associative memory survives metamorphosis in Lepidoptera, provokes intriguing new questions about the organization and persistence of the central nervous system during metamorphosis. Our results have both ecological and evolutionary implications, as retention of memory through metamorphosis could influence host choice by polyphagous insects, shape habitat selection, and lead to eventual sympatric speciation

    Ginkgo biloba Responds to Herbivory by Activating Early Signaling and Direct Defenses

    Get PDF
    Background: Ginkgo biloba (Ginkgoaceae) is one of the most ancient living seed plants and is regarded as a living fossil. G. biloba has a broad spectrum of resistance or tolerance to many pathogens and herbivores because of the presence of toxic leaf compounds. Little is known about early and late events occurring in G. biloba upon herbivory. The aim of this study was to assess whether herbivory by the generalist Spodoptera littoralis was able to induce early signaling and direct defense in G. biloba by evaluating early and late responses. Methodology/Principal Findings: Early and late responses in mechanically wounded leaves and in leaves damaged by S. littoralis included plasma transmembrane potential (Vm) variations, time-course changes in both cytosolic calcium concentration ([Ca 2+]cyt) and H2O2 production, the regulation of genes correlated to terpenoid and flavonoid biosynthesis, the induction of direct defense compounds, and the release of volatile organic compounds (VOCs). The results show that G. biloba responded to hebivory with a significant Vm depolarization which was associated to significant increases in both [Ca 2+] cyt and H 2O 2. Several defense genes were regulated by herbivory, including those coding for ROS scavenging enzymes and the synthesis of terpenoids and flavonoids. Metabolomic analyses revealed the herbivore-induced production of several flavonoids and VOCs. Surprisingly, no significant induction by herbivory was found for two of the most characteristic G. biloba classes of bioactive compounds; ginkgolides and bilobalides

    Specialized Learning in Antlions (Neuroptera: Myrmeleontidae), Pit-Digging Predators, Shortens Vulnerable Larval Stage

    Get PDF
    Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas “median survival time,” the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical “learning curve” but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning
    corecore