11 research outputs found

    Efficacy of convection enhanced delivery of MTX110 (soluble panobinostat) in preclinical Diffuse Intrinsic Pontine Glioma models using metabolic hyperpolarized 13C imaging

    No full text
    Background: Diffuse intrinsic pontine glioma (DIPG) usually occurs in children and has poor outcomes despite treatment. Large drug screens have identified the pan-histone deacetylate inhibitor panobinostat as a promising agent, however clinical response might be hampered by limited blood brain barrier penetration. Hyperpolarized 13C magnetic resonance (MR) metabolic imaging has successfully been applied to non-invasively assess metabolic activity of cancer therapies. Here, we use in vitro and in vivo DIPG models to validate the therapeutic efficacy of MTX110, an aqueous form of panobinostat delivered by convection enhanced delivery (CED) and apply metabolic imaging. Methods: MTX110 inhibitory effect was assessed in 11 DIPG cell lines. Caspase 3/7 levels were measured to assess mode of cell death. FACS analysis was utilized to determine impact on cell cycle. Hyperpolarized 13C imaging determined changes in pyruvate and lactate levels after treatment. In vivo activity of CED of MTX110 was assessed in a patient-derived xenograft rat model and tissue half-life of MTX110 was determined using mass spectrometry. Results: MTX110 showed similar IC50 to panobinostat ranging from 5.34 nM and 47.96 nM. Anti-proliferative effects of MTX110 are mediated by G1 cell cycle arrest and subsequent apoptosis. Drug treatment led to reduced pyruvate to lactate conversion. CED of MTX110 significantly prolonged survival of tumor-bearing rats (p = 0.0372) with no signs of systemic toxicity. Tissue half-life after single CED of MTX110 is 2 h. Conclusions: Our results demonstrate that CED of MTX110, has potent antitumor activity with limited systemic toxicity and that hyperpolarized 13C imaging is able to assess metabolic impact

    Multiparametric Longitudinal Profiling of RCAS-tva-Induced PDGFB-Driven Experimental Glioma

    No full text
    Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva) system is a powerful preclinical glioma model offering a high grade of spatial and temporal control of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model displays MRI and [18F]FET-PET features that highly resemble the corresponding established human disease, emphasizing the high translational relevance of this experimental model. Furthermore, our investigations unravel exponential growth dynamics and a model-specific tumor microenvironment, as assessed by histology and immunochemistry. Taken together, our study provides further insights into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic interventions

    Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naïve diffuse midline glioma models

    Full text link
    BACKGROUND Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine gliomas (DIPGs), have a dismal prognosis with less than 2% surviving 5-years post-diagnosis. The majority of DIPGs and all DMGs harbor mutations altering the epigenetic regulatory histone tail (H3 K27M). Investigations addressing DMG epigenetics have identified few promising drugs, including the HDAC inhibitor (HDACi) panobinostat. Here, we use clinically-relevant DMG models to identify and validate other effective HDACi and their biomarkers of response. METHODS HDACi were tested across biopsy-derived treatment-naïve in vitro and in vivo DMG models with biologically-relevant radiation-resistance. RNA sequencing was performed to define and compare drug efficacy, and to map predictive biomarkers of response. RESULTS Quisinostat and romidepsin showed efficacy with a low nanomolar IC50 values (~50 and ~5 nM, respectively). Comparative transcriptome analyses across quisinostat, romidepsin, and panobinostat showed a greater degree of shared biological effects between quisinostat and panobinostat, and less overlap with romidepsin. However, some transcriptional changes were consistent across all three drugs at similar biologically effective doses, such as overexpression of TNNT1 and downregulation of COL20A1, identifying these as potential vulnerabilities or on-target biomarkers in DMG. Quisinostat and romidepsin significantly (p <0.0001) inhibited in vivo tumor growth. CONCLUSIONS Our data highlights the utility of treatment-naïve biopsy-derived models; establishes quisinostat and romidepsin as effective in vivo; illuminates potential mechanisms and/or biomarkers of DMG cell lethality due to HDAC inhibition; and emphasizes the need for brain-tumor-penetrant versions of potentially efficacious agents

    Targeting CSF1R Alone or in Combination with PD1 in Experimental Glioma

    No full text
    Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition

    Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas

    Full text link
    BACKGROUND Pediatric diffuse midline gliomas (DMGs) are incurable childhood cancers. The imipridone ONC201 has shown early clinical efficacy in a subset of DMGs. However, the anticancer mechanisms of ONC201 and its derivative ONC206 have not been fully described in DMGs. METHODS DMG models including primary human in vitro (n = 18) and in vivo (murine and zebrafish) models, and patient (n = 20) frozen and FFPE specimens were used. Drug-target engagement was evaluated using in silico ChemPLP and in vitro thermal shift assay. Drug toxicity and neurotoxicity were assessed in zebrafish models. Seahorse XF Cell Mito Stress Test, MitoSOX and TMRM assays, and electron microscopy imaging were used to assess metabolic signatures. Cell lineage differentiation and drug-altered pathways were defined using bulk and single-cell RNA-seq. RESULTS ONC201 and ONC206 reduce viability of DMG cells in nM concentrations and extend survival of DMG PDX models (ONC201: 117 days, P = .01; ONC206: 113 days, P = .001). ONC206 is 10X more potent than ONC201 in vitro and combination treatment was the most efficacious at prolonging survival in vivo (125 days, P = .02). Thermal shift assay confirmed that both drugs bind to ClpP, with ONC206 exhibiting a higher binding affinity as assessed by in silico ChemPLP. ClpP activation by both drugs results in impaired tumor cell metabolism, mitochondrial damage, ROS production, activation of integrative stress response (ISR), and apoptosis in vitro and in vivo. Strikingly, imipridone treatment triggered a lineage shift from a proliferative, oligodendrocyte precursor-like state to a mature, astrocyte-like state. CONCLUSION Targeting mitochondrial metabolism and ISR activation effectively impairs DMG tumorigenicity. These results supported the initiation of two pediatric clinical trials (NCT05009992, NCT04732065)
    corecore