5 research outputs found

    Flow control in connection-oriented networks: a time-varying sampling period system case study

    Get PDF
    summary:In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of the control units arrival, the period between the transfer speed modifications depends on the flow rate RTT earlier, and consequently varies with time. A new, nonlinear algorithm combining the Smith principle with the proportional controller with saturation is proposed. Conditions for data loss elimination and full resource utilisation are formulated and strictly proved with explicit consideration of irregularities in the feedback information availability. Subsequently, the algorithm robustness with respect to imprecise propagation time estimation is demonstrated. Finally, a modified strategy implementing the feed-forward compensation is proposed. The strategy not only eliminates packet loss and guarantees the maximum resource utilisation, but also decreases the influence of the available bandwidth on the queue length. In this way the data transfer delay jitter is reduced, which helps to obtain the desirable Quality of Service (QoS) in the network

    Flow control in connection-oriented networks: a time-varying sampling period system case study

    Get PDF
    summary:In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of the control units arrival, the period between the transfer speed modifications depends on the flow rate RTT earlier, and consequently varies with time. A new, nonlinear algorithm combining the Smith principle with the proportional controller with saturation is proposed. Conditions for data loss elimination and full resource utilisation are formulated and strictly proved with explicit consideration of irregularities in the feedback information availability. Subsequently, the algorithm robustness with respect to imprecise propagation time estimation is demonstrated. Finally, a modified strategy implementing the feed-forward compensation is proposed. The strategy not only eliminates packet loss and guarantees the maximum resource utilisation, but also decreases the influence of the available bandwidth on the queue length. In this way the data transfer delay jitter is reduced, which helps to obtain the desirable Quality of Service (QoS) in the network

    Congestion Control in Data Transmission Networks: Sliding Mode and Other Designs

    No full text
    Congestion Control in Data Transmission Networks details the modeling and control of data traffic in communication networks. It shows how various networking phenomena can be represented in a consistent mathematical framework suitable for rigorous formal analysis. The monograph differentiates between fluid-flow continuous-time traffic models, discrete-time processes with constant sampling rates, and sampled-data systems with variable discretization periods. The authors address a number of difficult real-life problems, such as: • optimal control of flows with disparate, time-varying delay; • the existence of source and channel nonlinearities; • the balancing of quality of service and fairness requirements; and • the incorporation of variable rate allocation policies. Appropriate control mechanisms which can handle congestion and guarantee high throughput in various traffic scenarios (with different networking phenomena being considered) are proposed. Systematic design procedures using sound control-theoretic foundations are adopted. Since robustness issues are of major concern in providing efficient data-flow regulation in today’s networks, sliding-mode control is selected as the principal technique to be applied in creating the control solutions. The controller derivation is given extensive analytical treatment and is supported with numerous realistic simulations. A comparison with existing solutions is also provided. The concepts applied are discussed in a number of illustrative examples, and supported by many figures, tables, and graphs walking the reader through the ideas and introducing their relevance in real networks
    corecore