181 research outputs found

    Rubisco function, evolution, and engineering

    Full text link
    Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin Benson Bassham (CBB) cycle is the dominant carbon fixation pathway on earth, driving >99.5% of the ~120 billion tons of carbon that are "fixed" as sugar, by plants, algae and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast and it is a bottleneck in flux through the pathway. This presents a paradox - why hasn't rubisco evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs, and that rubisco variants have been optimized for their native physiological environment. Here we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and, thereby, promote plant growth

    Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs.

    No full text
    The binding of serum response factor (SRF) to the c-fos serum response element has been shown to be essential for serum and growth factor activation of c-Fos. Since SRF is ubiquitously expressed, it has been difficult to measure the activity of SRF introduced into cells. To assay for functions of SRF in cells, we have changed its DNA binding specificity by fusing it to the DNA binding domain of GAL4. Transfection of GAL4-SRF constructs into cells has allowed us to identify SRF's transcriptional activation domain as well as domains which inhibit this activity. First, we found that the transcriptional activation domain maps to between amino acids 339 and 508 in HeLa cells and to between amino acids 414 and 508 in NIH 3T3 cells. Second, we show that in the context of GAL4-SRF constructs, there are two separate domains of SRF that can inhibit its activation domain. Although these domains overlap the DNA binding and dimerization domains of SRF, these functions were not required for inhibition. Finally, we show that one of the inhibitory domains is modular in that it can also inhibit activation when it is moved amino terminal to GAL4's DNA binding domain in an SRF-GAL4-SRF construct. The implications of these inhibitory domains for SRF regulation are discussed

    Purification of the c-fos enhancer-binding protein.

    No full text
    • …
    corecore