77 research outputs found

    The PPARγ2 P12A polymorphism is not associated with all-cause mortality in patients with type 2 diabetes mellitus

    Get PDF
    The high mortality risk of patients with type 2 diabetes mellitus may well be explained by the several comorbidities and/or complications. Also the intrinsic genetic component predisposing to diabetes might have a role in shaping the risk of diabetes-related mortality. Among type 2 diabetes mellitus SNPs, rs1801282 is of particular interest because (i) it is harbored by peroxisome proliferator-activated receptor-γ2 (PPARγ2), which is the target for thiazolidinediones which are used as antidiabetic drugs, decreasing all-cause mortality in type 2 diabetes mellitus, and (ii) it is associated with insulin resistance and related traits, risk factors for overall mortality in type 2 diabetes mellitus. We investigated the role of PPARγ2 P12A, according to a dominant model (PA + AA vs. PP individuals) on incident all-cause mortality in three cohorts of type 2 diabetes mellitus, comprising a total of 1672 patients (462 deaths) and then performed a meta-analysis of ours and all available published data. In the three cohorts pooled and analyzed together, no association between PPARγ2 P12A and all-cause mortality was observed (HR 1.02, 95 % CI 0.79–1.33). Similar results were observed after adjusting for age, sex, smoking habits, and BMI (HR 1.09, 95 % CI 0.83–1.43). In a meta-analysis of ours and all studies previously published (n = 3241 individuals; 666 events), no association was observed between PPARγ2 P12A and all-cause mortality (HR 1.07, 95 % CI 0.85–1.33). Results from our individual samples as well as from our meta-analysis suggest that the PPARγ2 P12A does not significantly affect all-cause mortality in patients with type 2 diabetes mellitus

    Role of the ENPP1 K121Q Polymorphism in Glucose Homeostasis

    Get PDF
    OBJECTIVE— To study the role of the ENPP1 Q121 variant on glucose homeostasis in whites from Italy

    Association of the 1q25 diabetes-specific coronary heart disease locus with slterations of the γ-glutamyl cycle and increased methylglyoxal levels in endothelial cells

    Get PDF
    A chromosome 1q25 variant (rs10911021) has been associated with coronary heart disease (CHD) in type 2 diabetes. In human umbilical vein endothelial cells (HUVECs), the risk allele "C" is associated with lower expression of the adjacent gene GLUL encoding glutamine synthase, converting glutamic acid to glutamine. To further investigate the mechanisms through which this locus affects CHD risk, we measured 35 intracellular metabolites involved in glutamic acid metabolism and the γ-glutamyl cycle in 62 HUVEC strains carrying different rs10911021 genotypes. Eight metabolites were positively associated with the risk allele (17-58% increase/allele copy, P = 0.046-0.002), including five γ-glutamyl amino acids, β-citryl-glutamate, N-acetyl-aspartyl-glutamate, and ophthalmate-a marker of γ-glutamyl cycle malfunction. Consistent with these findings, the risk allele was also associated with decreased glutathione-to-glutamate ratio (-9%, P = 0.012), decreased S-lactoylglutathione (-41%, P = 0.019), and reduced detoxification of the atherogenic compound methylglyoxal (+54%, P = 0.008). GLUL downregulation by shRNA caused a 40% increase in the methylglyoxal level, which was completely prevented by glutamine supplementation. In summary, we have identified intracellular metabolic traits associated with the 1q25 risk allele in HUVECs, including impairments of the γ-glutamyl cycle and methylglyoxal detoxification. Glutamine supplementation abolishes the latter abnormality, suggesting that such treatment may prevent CHD in 1q25 risk allele carriers

    Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies

    Get PDF
    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing developmen

    Variability in genes regulating vitamin D metabolism is associated with vitamin D levels in type 2 diabetes

    Get PDF
    Mortality rate is increased in type 2 diabetes (T2D). Low vitamin D levels are associated with increased mortality risk in T2D. In the general population, genetic variants affecting vitamin D metabolism (DHCR7 rs12785878, CYP2R1 rs10741657, GC rs4588) have been associated with serum vitamin D. We studied the association of these variants with serum vitamin D in 2163 patients with T2D from the "Sapienza University Mortality and Morbidity Event Rate (SUMMER) study in diabetes". Measurements of serum vitamin D were centralised. Genotypes were obtained by Eco™ Real-Time PCR. Data were adjusted for gender, age, BMI, HbA1c, T2D therapy and sampling season. DHCR7 rs12785878 (p = 1 x 10-4) and GC rs4588 (p = 1 x 10-6) but not CYP2R1 rs10741657 (p = 0.31) were significantly associated with vitamin D levels. One unit of a weighted genotype risk score (GRS) was strongly associated with vitamin D levels (p = 1.1 x 10-11) and insufficiency (<30 ng/ml) (OR, 95%CI = 1.28, 1.16-1.41, p = 1.1 x 10-7). In conclusion, DHCR7 rs12785878 and GC rs4588, but not CYP2R1 rs10741657, are significantly associated with vitamin D levels. When the 3 variants were considered together as GRS, a strong association with vitamin D levels and vitamin D insufficiency was observed, thus providing robust evidence that genes involved in vitamin D metabolism modulate serum vitamin D in T2D

    ENPP1 Affects Insulin Action and Secretion: Evidences from In Vitro Studies

    Get PDF
    The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance, defective insulin secretion and glucose metabolism abnormalities
    corecore