19 research outputs found

    High performance fluidized bed photoreactor for ethylene decomposition

    No full text
    Removal of C2H4 in the air was carried out in the continuous flow reactor with the photocatalytic bed (expanded polystyrene spheres coated by TiO2 or SiO2/TiO2) under irradiation of UV light. Continuous flow of a gas stream through the reactor was realised at the static bed and under bed fluidization. The required flow of a gas stream through the reactor for bed fluidisation was 500–700 ml/min, whereas for the static bed the flow rate of 20 ml/min was used. Fluidized bed reactor appeared to be much more efficient in ethylene removal than that with the stationary bed. It was caused by the increased speed of C2H4 mass transfer to the photocatalyst surface and better utilization of the incident UV light. In the fluidized bed reactor calculated rate of C2H4 degradation was around 10 μg/min whereas in the stationary state 1.2 μg/min only

    Electromyography as an intraoperative test to assess the quality of nerve anastomosis – experimental study on rats

    No full text
    Many factors contribute to successful nerve reconstruction. The correct technique of anastomosis is one of the key elements that determine the final result of a surgery. The aim of this study is to examine how useful an electromyography (EMG) can be as an objective intraoperative anastomosis assessment method

    Biocompatibility and Fatigue Properties of Polystyrene-polyisobutylene-polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial

    No full text
    This paper will discuss the biocompatibility and dynamic fatigue properties of polystyrene-b-polyisobutylene-b-polystyrene thermoplastic elastomer with 30 wt % polystyrene (SIBS30), an emerging FDA-approved biomaterial. SIBS30 is a very soft, transparent biomaterial resembling silicone rubber, with superior mechanical properties. Using the hysteresis method adopted for soft biomaterials, the dynamic fatigue properties of SIBS30 were found to be between those of polyurethane and silicone rubber, with fatigue life twice as long as that of silicone. Under single load testing (SLT, 1.25 MPa), SIBS30 displayed less than half the dynamic creep compared to silicone, both in air and in vitro (37 °C, simulated body fluid). Hemolysis and 30- and 180-day implantation studies revealed excellent biocompatibility of the new biomaterial. The results presented in this paper indicate that, in comparison with silicone rubber, SIBS30 has similar biocompatibility and superior dynamic fatigue properties

    The Role of Resolvins, Protectins and Marensins in Non-Alcoholic Fatty Liver Disease (NAFLD)

    No full text
    Increased triacylglycerols’ (TAG) synthesis, insulin resistance, and prolonged liver lipid storage might lead to the development of non-alcoholic fatty liver disease (NAFLD). Global prevalence of NAFLD has been estimated to be around 25%, with gradual elevation of this ratio along with the increased content of adipose tissue in a body. The initial stages of NAFLD may be reversible, but the exposition to pathological factors should be limited. As dietary factors greatly influence various disease development, scientists try to find dietary components, helping to alleviate the steatosis. These components include n-3 polyunsaturated (PUFA) fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA). This review focused on the role of resolvins, protectins and merensins in NAFLD

    In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (Epilobium angustifolium L.)

    No full text
    Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin–Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts

    In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (<i>Epilobium angustifolium</i> L.)

    No full text
    Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin–Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts
    corecore